9 research outputs found

    Time-Resolved Transcriptome Analysis of Bacillus subtilis Responding to Valine, Glutamate, and Glutamine

    Get PDF
    Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector

    Microbial oils as nutraceuticals and animal feeds

    No full text
    45 p.-5 fig.-3 tab.Lipids and oils are produced by all single-cell organisms for essential structural and functional roles; however, the term single cell oils (SCOs) is mainly restricted to describe the lipids produced by a limited number of oleaginous microorganisms (archaea, bacteria, yeast, fungi, and microalgae) with oil contents higher than 20% of biomass weigh. SCOs have different fatty acid compositions from those of plant seed or fish oils and are nowadays considered as new sources of nutraceuticals and animal feeds. In spite of the current commercial success of some SCOs, the development of more efficient microbial fermentation processes and the possibility of manipulating by systems metabolic engineering the lipid composition of cells require new biotechnological strategies to obtain high yields of the desired SCOs. Understanding the synthesis and regulatory mechanisms involved in the production of SCOs is fundamental to eliminate the metabolic bottlenecks that impair achieving high oil yields.This chapter is supported by grants from the Community of Madrid and the Structural Funds of the European Union (Ref: S2013/ABI2783 (INSPIRA1-CM)), the Ministry of Economy, the Industry and Competitiveness (Ref: RTC-2016-4860-2; Ref: BFU2014-55534-C2-1-P), and the Intramural Program of the CSIC (Ref: 201420E086) and the H2020 FET-OPEN program (LIAR: Ref 686585).Peer reviewe

    Microbial Oils as Nutraceuticals and Animal Feeds

    No full text
    corecore