13,753 research outputs found
Thermodynamics of carrier distribution within localized electronic states with a broad Gaussian energy distribution and its effect on luminescence behavior of localized states
published_or_final_versio
Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan
Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches.
Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach.
Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy.
Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery
Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys
Temperature-dependent photoluminescence measurements have been carried out in zinc-blende InGaN epilayers grown on GaAs substrates by metalorganic vapor-phase epitaxy. An anomalous temperature dependence of the peak position of the luminescence band was observed. Considering thermal activation and the transfer of excitons localized at different potential minima, we employed a model to explain the observed behavior. A good agreement between the theory and the experiment is achieved. At high temperatures, the model can be approximated to the band-tail-state emission model proposed by Eliseev et al. [Appl. Phys. Lett. 71, 569 (1997)]. © 2001 American Institute of Physics.published_or_final_versio
Revisiting Scalar and Pseudoscalar Couplings with Nucleons
Certain dark matter interactions with nuclei are mediated possibly by a
scalar or pseudoscalar Higgs boson. The estimation of the corresponding cross
sections requires a correct evaluation of the couplings between the scalar or
pseudoscalar Higgs boson and the nucleons. Progress has been made in two
aspects relevant to this study in the past few years. First, recent lattice
calculations show that the strange-quark sigma term and the
strange-quark content in the nucleon are much smaller than what are expected
previously. Second, lattice and model analyses imply sizable SU(3) breaking
effects in the determination on the axial-vector coupling constant that
in turn affect the extraction of the isosinglet coupling and the
strange quark spin component from polarized deep inelastic
scattering experiments. Based on these new developments, we re-evaluate the
relevant nucleon matrix elements and compute the scalar and pseudoscalar
couplings of the proton and neutron. We also find that the strange quark
contribution in both types of couplings is smaller than previously thought.Comment: 17 pages, Sec. II is revised and the pion-nucleon sigma term
extracted from the scattering data is discussed. Version to appear in JHE
Global parameter search reveals design principles of the mammalian circadian clock
Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of
several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has
been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours.
Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when
a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment.
Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the
robustness and phase resetting properties of the mammalian clock, even at the single neuron level
Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array
We propose a near-infrared super resolution imaging system without a lens or
a mirror but with an array of metallic nanoshell particle chain. The imaging
array can plasmonically transfer the near-field components of dipole sources in
the incoherent and coherent manners and the super resolution images can be
reconstructed in the output plane. By tunning the parameters of the metallic
nanoshell particle, the plasmon resonance band of the isolate nanoshell
particle red-shifts to the near-infrared region. The near-infrared super
resolution images are obtained subsequently. We calculate the field intensity
distribution at the different planes of imaging process using the finite
element method and find that the array has super resolution imaging capability
at near-infrared wavelengths. We also show that the image formation highly
depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure
The Regge Limit for Green Functions in Conformal Field Theory
We define a Regge limit for off-shell Green functions in quantum field
theory, and study it in the particular case of conformal field theories (CFT).
Our limit differs from that defined in arXiv:0801.3002, the latter being only a
particular corner of the Regge regime. By studying the limit for free CFTs, we
are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak
coupling. The dominance of Feynman graphs where only two high momentum lines
are exchanged in the t-channel, follows simply from the free field analysis. We
can then define the BFKL kernel in terms of the two point function of a simple
light-like bilocal operator. We also include a brief discussion of the gravity
dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit
defined here and previous work in CFT. Clarification of causal orderings in
the limit. References adde
A time-domain control signal detection technique for OFDM
Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset
The Spectrum of Goldstini and Modulini
When supersymmetry is broken in multiple sectors via independent dynamics,
the theory furnishes a corresponding multiplicity of "goldstini" degrees of
freedom which may play a substantial role in collider phenomenology and
cosmology. In this paper, we explore the tree-level mass spectrum of goldstini
arising from a general admixture of F-term, D-term, and almost no-scale
supersymmetry breaking, employing non-linear superfields and a novel gauge
fixing for supergravity discussed in a companion paper. In theories of F-term
and D-term breaking, goldstini acquire a mass which is precisely twice the
gravitino mass, while the inclusion of no-scale breaking renders one of these
modes, the modulino, massless. We argue that the vanishing modulino mass can be
explained in terms of an accidental and spontaneously broken "global"
supersymmetry.Comment: 10 pages, 2 figures; v2: typo corrected, references updated; v3:
version to appear in JHE
Trypanocidal and leishmanicidal activity of six limonoids
Six limonoids [kotschyienone A and B (1, 2), 7-deacetylgedunin (3), 7-deacetyl-7-oxogedunin (4), andirobin (5) and methyl angolensate (6)] were investigated for their trypanocidal and leishmanicidal activities using bloodstream forms of Trypanosoma brucei and promastigotes of Leishmania major. Whereas all compounds showed anti-trypanosomal activity, only compounds 1–4 displayed anti-leishmanial activity. The 50% growth inhibition (GI 50) values for the trypanocidal and leishmanicidal activity of the compounds ranged between 2.5 and 14.9 μM. Kotschyienone A (1) was found to be the most active compound with a minimal inhibition concentration (MIC) value of 10 μM and GI 50 values between 2.5 and 2.9 μM. Only compounds 1 and 3 showed moderate cytotoxicity against HL-60 cells with MIC and GI 50 values of 100 μM and 31.5–46.2 μM, respectively. Compound 1 was also found to show activity against intracellular amastigotes of L. major with a GI 50 value of 1.5 μM. The results suggest that limonoids have potential as drug candidates for the development of new treatments against trypanosomiasis and leishmaniasis
- …
