911 research outputs found

    Elevated CO<sub>2</sub> does not increase eucalypt forest productivity on a low-phosphorus soil

    Get PDF
    Rising atmospheric CO2 stimulates photosynthesis and productivity of forests, offsetting CO2 emissions. Elevated CO2 experiments in temperate planted forests yielded ~23% increases in productivity over the initial years. Whether similar CO2 stimulation occurs in mature evergreen broadleaved forests on low-phosphorus (P) soils is unknown, largely due to lack of experimental evidence. This knowledge gap creates major uncertainties in future climate projections as a large part of the tropics is P-limited. Here,we increased atmospheric CO2 concentration in a mature broadleaved evergreen eucalypt forest for three years, in the first large-scale experiment on a P-limited site. We show that tree growth and other aboveground productivity components did not significantly increase in response to elevated CO2 in three years, despite a sustained 19% increase in leaf photosynthesis. Moreover, tree growth in ambient CO2 was strongly P-limited and increased by ~35% with added phosphorus. The findings suggest that P availability may potentially constrain CO2-enhanced productivity in P-limited forests; hence, future atmospheric CO2 trajectories may be higher than predicted by some models. As a result, coupled climate-carbon models should incorporate both nitrogen and phosphorus limitations to vegetation productivity in estimating future carbon sinks

    Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers

    Get PDF
    Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end joining (NHEJ) pathway required for the repair of DNA double strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. Methods: We evaluated clinicopathological significance of DNA-PKcs protein expression in 1161 tumours and DNA-PKcs mRNA expression in 1950 tumours. We correlated DNA-PKcs to other markers of aggressive phenotypes, DNA repair, apoptosis and cell cycle regulation. Results: Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps<0.05). Absence of BRCA1, low XRCC1/SMUG1/APE1/Polβ were also more likely in low DNA-PKcs expressing tumours (ps<0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer specific survival (BCCS) in univariate and multivariate analysis (ps<0.01). At the mRNA level, low DNA-PKcs was associated with PAM50.Her2 and PAM50.LumA molecular phenotypes (ps<0.01) and poor BCSS. In patients with ER positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Conclusions: Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers

    Learning by hiring: the effects of scientists’ inbound mobility on research performance in academia

    Get PDF
    This study investigates the effects of scientists’ inbound mobility on the research performance of incumbent scientists in an academic setting. The theoretical framework integrates insights from learning theory and social comparison theory to suggest two main mechanisms behind these effects, localized learning and social comparison. The authors propose several hypotheses about the conditions that might intensify or weaken such effects. Specifically, the arrival of new scientific personnel is likely to exert stronger positive effects on the performance of incumbent scientists with shorter (cf. longer) organizational tenure; in addition, academic departments with less diversified expertise and with higher levels of internal collaborations likely reap greater benefits from learning by hiring. The empirical findings, based on a longitudinal analysis of a sample of 94 U.S. academic chemical engineering departments, provide empirical support for these contentions

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    Get PDF
    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties

    Crop modelling: towards locally relevant and climate-informed adaptation

    No full text
    A gap between the potential and practical realisation of adaptation exists: adaptation strategies need to be both climate-informed and locally relevant to be viable. Place-based approaches study local and contemporary dynamics of the agricultural system, whereas climate impact modelling simulates climate-crop interactions across temporal and spatial scales. Crop-climate modelling and place-based research on adaptation were strategically reviewed and analysed to identify areas of commonality, differences, and potential learning opportunities to enhance the relevance of both disciplines through interdisciplinary approaches. Crop-modelling studies have projected a 7–15% mean yield change with adaptation compared to a non-adaptation baseline (Nature Climate Change 4:1–5, 2014). Of the 17 types of adaptation strategy identified in this study as place-based adaptations occurring within Central America, only five were represented in crop-climate modelling literature, and these were as follows: fertiliser, irrigation, change in planting date, change in cultivar and area cultivated. The breath and agency of real-life adaptation compared to its representation in modelling studies is a source of error in climate impact simulations. Conversely, adaptation research that omits assessment of future climate variability and impact does not enable to provide sustainable adaptation strategies to local communities so risk maladaptation. Integrated and participatory methods can identify and reduce these sources of uncertainty, for example, stakeholder’s engagement can identify locally relevant adaptation pathways. We propose a research agenda that uses methodological approaches from both the modelling and place-based approaches to work towards climate-informed locally relevant adaptation

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact
    corecore