2,527 research outputs found
Recommended from our members
Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion.
The advent of cell culture-based methods for the establishment and expansion of human corneal endothelial cells (CEnC) has provided a source of transplantable corneal endothelium, with a significant potential to challenge the one donor-one recipient paradigm. However, concerns over cell identity remain, and a comprehensive characterization of the cultured CEnC across serial passages has not been performed. To this end, we compared two established CEnC culture methods by assessing the transcriptomic changes that occur during in vitro expansion. In confluent monolayers, low mitogenic culture conditions preserved corneal endothelial cell state identity better than culture in high mitogenic conditions. Expansion by continuous passaging induced replicative cell senescence. Transcriptomic analysis of the senescent phenotype identified a cell senescence signature distinct for CEnC. We identified activation of both classic and new cell signaling pathways that may be targeted to prevent senescence, a significant barrier to realizing the potential clinical utility of in vitro expansion
Mononuclear dysprosium(III) complexes with triphenylphosphine oxide ligands: controlling the coordination environment and magnetic anisotropy
We report the synthesis, structural and magnetic characterization of five mononuclear DyIII ion complexes using triphenylphosphine oxide as a monodentate ligand. They have formulae [DyIII(OPPh3)3(NO3)3] (1), [DyIII(OPPh3)4(NO3)2](NO3) (2), [DyIII(OPPh3)3Cl3] (3), [DyIII(OPPh3)4Cl2]Cl (4) and [DyIII(OPPh3)4Cl2](FeCl4) (5). These complexes are characterized using single crystal X-ray diffraction, which revealed that each complex has a unique coordination environment around the DyIII ion, which results in varying dynamic magnetic behavior. Ab initio calculations are performed to rationalize the observed magnetic behavior and to understand the effect that the ligand and coordination geometry around the DyIII ion has on the single-molecule magnet (SMM) behavior. In recent years, seven coordinate DyIII complexes possessing pseudo ~D5h symmetry are found to yield attractive blocking temperatures for the development of new SMM complexes. However, here we show that the strength of the donor ligand plays a critical role in determining the effective energy barrier and is not simply dependent on the geometry and the symmetry around the DyIII ion. Seven coordinate molecules possessing pseudo D5h symmetry with strong equatorial ligation and weak axial ligation are found to be inferior, exhibiting no SMM characteristics under zero-field conditions. Thus, this comprehensive study offers insight on improving the blocking temperature of mononuclear SMMs
Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition
Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition
Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight
We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel
Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting
We present an analytical method to quantify clustering in super-resolution
localization images of static surfaces in two dimensions. The method also
describes how over-counting of labeled molecules contributes to apparent
self-clustering and how the effective lateral resolution of an image can be
determined. This treatment applies to clustering of proteins and lipids in
membranes, where there is significant interest in using super-resolution
localization techniques to probe membrane heterogeneity. When images are
quantified using pair correlation functions, the magnitude of apparent
clustering due to over-counting will vary inversely with the surface density of
labeled molecules and does not depend on the number of times an average
molecule is counted. Over-counting does not yield apparent co-clustering in
double label experiments when pair cross-correlation functions are measured. We
apply our analytical method to quantify the distribution of the IgE receptor
(Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells
from images acquired using stochastic optical reconstruction microscopy (STORM)
and scanning electron microscopy (SEM). We find that apparent clustering of
labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from
over-counting of individual complexes. Thus our results indicate that these
receptors are randomly distributed within the resolution and sensitivity limits
of these experiments.Comment: 22 pages, 5 figure
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
- …
