2,608 research outputs found
Holographic Anomalous Conductivities and the Chiral Magnetic Effect
We calculate anomaly induced conductivities from a holographic gauge theory
model using Kubo formulas, making a clear conceptual distinction between
thermodynamic state variables such as chemical potentials and external
background fields. This allows us to pinpoint ambiguities in previous
holographic calculations of the chiral magnetic conductivity. We also calculate
the corresponding anomalous current three-point functions in special kinematic
regimes. We compare the holographic results to weak coupling calculations using
both dimensional regularization and cutoff regularization. In order to
reproduce the weak coupling results it is necessary to allow for singular
holographic gauge field configurations when a chiral chemical potential is
introduced for a chiral charge defined through a gauge invariant but
non-conserved chiral density. We argue that this is appropriate for actually
addressing charge separation due to the chiral magnetic effect.Comment: 17 pages, 1 figure. v2: 18 pages, 1 figure, discussion clarified
throughout the text, references added, version accepted for publication in
JHE
Mechanical Stress Inference for Two Dimensional Cell Arrays
Many morphogenetic processes involve mechanical rearrangement of epithelial
tissues that is driven by precisely regulated cytoskeletal forces and cell
adhesion. The mechanical state of the cell and intercellular adhesion are not
only the targets of regulation, but are themselves likely signals that
coordinate developmental process. Yet, because it is difficult to directly
measure mechanical stress {\it in vivo} on sub-cellular scale, little is
understood about the role of mechanics of development. Here we present an
alternative approach which takes advantage of the recent progress in live
imaging of morphogenetic processes and uses computational analysis of high
resolution images of epithelial tissues to infer relative magnitude of forces
acting within and between cells. We model intracellular stress in terms of bulk
pressure and interfacial tension, allowing these parameters to vary from cell
to cell and from interface to interface. Assuming that epithelial cell layers
are close to mechanical equilibrium, we use the observed geometry of the two
dimensional cell array to infer interfacial tensions and intracellular
pressures. Here we present the mathematical formulation of the proposed
Mechanical Inverse method and apply it to the analysis of epithelial cell
layers observed at the onset of ventral furrow formation in the {\it
Drosophila} embryo and in the process of hair-cell determination in the avian
cochlea. The analysis reveals mechanical anisotropy in the former process and
mechanical heterogeneity, correlated with cell differentiation, in the latter
process. The method opens a way for quantitative and detailed experimental
tests of models of cell and tissue mechanics
Anomalous structure in the single particle spectrum of the fractional quantum Hall effect
The two-dimensional electron system (2DES) is a unique laboratory for the
physics of interacting particles. Application of a large magnetic field
produces massively degenerate quantum levels known as Landau levels. Within a
Landau level the kinetic energy of the electrons is suppressed, and
electron-electron interactions set the only energy scale. Coulomb interactions
break the degeneracy of the Landau levels and can cause the electrons to order
into complex ground states. In the high energy single particle spectrum of this
system, we observe salient and unexpected structure that extends across a wide
range of Landau level filling fractions. The structure appears only when the
2DES is cooled to very low temperature, indicating that it arises from delicate
ground state correlations. We characterize this structure by its evolution with
changing electron density and applied magnetic field. We present two possible
models for understanding these observations. Some of the energies of the
features agree qualitatively with what might be expected for composite
Fermions, which have proven effective for interpreting other experiments in
this regime. At the same time, a simple model with electrons localized on
ordered lattice sites also generates structure similar to those observed in the
experiment. Neither of these models alone is sufficient to explain the
observations across the entire range of densities measured. The discovery of
this unexpected prominent structure in the single particle spectrum of an
otherwise thoroughly studied system suggests that there exist core features of
the 2DES that have yet to be understood.Comment: 15 pages, 10 figure
Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures
Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects
Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA
In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action
Comparative effectiveness of dipeptidyl peptidase-4 (DPP-4) inhibitors and human glucagon-like peptide-1 (GLP-1) analogue as add-on therapies to sulphonylurea among diabetes patients in the Asia-Pacific region: a systematic review
The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options. Future larger-scale research should be conducted among other Asia-Pacific region to evaluate their efficacy in other ethnic groups
Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC
The Sphaleron Rate in SU(N) Gauge Theory
The sphaleron rate is defined as the diffusion constant for topological
number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration
of axial light quark number in QCD and is of interest both in electroweak
baryogenesis and possibly in heavy ion collisions. We calculate the
weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most
sensible extrapolation towards intermediate coupling which we can. We also
study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure
Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model
The alignment in flavour space of the Yukawa matrices of a general
two-Higgs-doublet model results in the absence of tree-level flavour-changing
neutral currents. In addition to the usual fermion masses and mixings, the
aligned Yukawa structure only contains three complex parameters, which are
potential new sources of CP violation. For particular values of these three
parameters all known specific implementations of the model based on discrete
Z_2 symmetries are recovered. One of the most distinctive features of the
two-Higgs-doublet model is the presence of a charged scalar. In this work, we
discuss its main phenomenological consequences in flavour-changing processes at
low energies and derive the corresponding constraints on the parameters of the
aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP.
References added. Discussion slightly extended. Conclusions unchange
Optical pump rectification emission: route to terahertz free-standing surface potential diagnostics
We introduce a method for diagnosing the electric surface potential of a semiconductor based on THz surface generation. In our scheme, that we name Optical Pump Rectification Emission, a THz field is generated directly on the surface via surface optical rectification of an ultrashort pulse after which the DC surface potential is screened with a second optical pump pulse. As the THz generation directly relates to the surface potential arising from the surface states, we can then observe the temporal dynamics of the static surface field induced by the screening effect of the photo-carriers. Such an approach is potentially insensitive to bulk carrier dynamics and does not require special illumination geometries
- …
