2,702 research outputs found
Beyond persons: extending the personal / subpersonal distinction to non-rational animals and artificial agents
The distinction between personal level explanations and subpersonal ones has been subject to much debate in philosophy. We understand it as one between explanations that focus on an agent’s interaction with its environment, and explanations that focus on the physical or computational enabling conditions of such an interaction. The distinction, understood this way, is necessary for a complete account of any agent, rational or not, biological or artificial. In particular, we review some recent research in Artificial Life that pretends to do completely without the distinction, while using agent-centered concepts all the way. It is argued that the rejection of agent level explanations in favour of mechanistic ones is due to an unmotivated need to choose among representationalism and eliminativism. The dilemma is a false one if the possibility of a radical form of externalism is considered
Leptogenesis in the presence of exact flavor symmetries
In models with flavor symmetries in the leptonic sector leptogenesis can take
place in a very different way compared to the standard leptogenesis scenario.
We study the generation of a asymmetry in these kind of models in the
flavor symmetric phase pointing out that successful leptogenesis requires (i)
the right-handed neutrinos to lie in different representations of the flavor
group; (ii) the flavons to be lighter at least that one of the right-handed
neutrino representations. When these conditions are satisfied leptogenesis
proceeds due to new contributions to the CP violating asymmetry and -depending
on the specific model- in several stages. We demonstrate the validity of these
arguments by studying in detail the generation of the asymmetry in a
scenario of a concrete flavor model realization.Comment: 25 pages, 7 figures; version 2: A few clarifications added. Version
matches publication in JHE
CP properties of symmetry-constrained two-Higgs-doublet models
The two-Higgs-doublet model can be constrained by imposing Higgs-family
symmetries and/or generalized CP symmetries. It is known that there are only
six independent classes of such symmetry-constrained models. We study the CP
properties of all cases in the bilinear formalism. An exact symmetry implies CP
conservation. We show that soft breaking of the symmetry can lead to
spontaneous CP violation (CPV) in three of the classes.Comment: 14 pages, 2 tables, revised version adapted to the journal
publicatio
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
Institutions, Human Capital, and Development
In this article, we revisit the relationship among institutions, human capital, and development. We argue that empirical models that treat institutions and human capital as exogenous are misspecified, both because of the usual omitted variable bias problems and because of differential measurement error in these variables, and that this misspecification is at the root of the very large returns of human capital, about four to five times greater than that implied by micro (Mincerian) estimates, found in the previous literature. Using cross-country and cross-regional regressions, we show that when we focus on historically determined differences in human capital and control for the effect of institutions, the impact of institutions on long-run development is robust, whereas the estimates of the effect of human capital are much diminished and become consistent with micro estimates. Using historical and cross-country regression evidence, we also show that there is no support for the view that differences in the human capital endowments of early European colonists have been a major factor in the subsequent institutional development of former colonies.Comisión Nacional de Investigación Ciencia y Tecnología (Chile) (CONICYT/Programa de Investigación Asociativa (project SOC1102))United States. Army Research Office (ARO MURI W911NF-12-1-0509
Flavourful Production at Hadron Colliders
We ask what new states may lie at or below the TeV scale, with sizable
flavour-dependent couplings to light quarks, putting them within reach of
hadron colliders via resonant production, or in association with Standard Model
states. In particular, we focus on the compatibility of such states with
stringent flavour-changing neutral current and electric-dipole moment
constraints. We argue that the broadest and most theoretically plausible
flavour structure of the new couplings is that they are hierarchical, as are
Standard Model Yukawa couplings, although the hierarchical pattern may well be
different. We point out that, without the need for any more elaborate or
restrictive structure, new scalars with "diquark" couplings to standard quarks
are particularly immune to existing constraints, and that such scalars may
arise within a variety of theoretical paradigms. In particular, there can be
substantial couplings to a pair of light quarks or to one light and one heavy
quark. For example, the latter possibility may provide a flavour-safe
interpretation of the asymmetry in top quark production observed at the
Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and
LHC, and argue that their discovery represents one of our best chances for new
insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde
Implications of Flavor Dynamics for Fermion Triplet Leptogenesis
We analyze the importance of flavor effects in models in which leptogenesis
proceeds via the decay of Majorana electroweak triplets. We find that depending
on the relative strengths of gauge and Yukawa reactions the asymmetry can
be sizably enhanced, exceeding in some cases an order of magnitude level. We
also discuss the impact that such effects can have for TeV-scale triplets
showing that as long as the asymmetry is produced by the dynamics of the
lightest such triplet they are negligible, but open the possibility for
scenarios in which the asymmetry is generated above the TeV scale by heavier
states, possibly surviving the TeV triplet related washouts. We investigate
these cases and show how they can be disentangled at the LHC by using Majorana
triplet collider observables and, in the case of minimal type III see-saw
models even through lepton flavor violation observables.Comment: 22 pages, 9 figures, extended discussion on collider phenomenology,
references added. Version matches publication in JHE
Can a falling tree make a noise in two forests at the same time?
It is a commonplace to claim that quantum mechanics supports the old idea
that a tree falling in a forest makes no sound unless there is a listener
present. In fact, this conclusion is far from obvious. Furthermore, if a
tunnelling particle is observed in the barrier region, it collapses to a state
in which it is no longer tunnelling. Does this imply that while tunnelling, the
particle can not have any physical effects? I argue that this is not the case,
and moreover, speculate that it may be possible for a particle to have effects
on two spacelike separate apparatuses simultaneously. I discuss the measurable
consequences of such a feat, and speculate about possible statistical tests
which could distinguish this view of quantum mechanics from a ``corpuscular''
one. Brief remarks are made about an experiment underway at Toronto to
investigate these issues.Comment: 9 pp, Latex, 3 figs, to appear in Proc. Obsc. Unr. Conf.; Fig 2
postscript repaired on 26.10.9
Recommended from our members
The influence of soil communities on the temperature sensitivity of soil respiration
Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity, to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities
Radiative contribution to neutrino masses and mixing in SSM
In an extension of the minimal supersymmetric standard model (popularly known
as the SSM), three right handed neutrino superfields are introduced to
solve the -problem and to accommodate the non-vanishing neutrino masses
and mixing. Neutrino masses at the tree level are generated through parity
violation and seesaw mechanism. We have analyzed the full effect of one-loop
contributions to the neutrino mass matrix. We show that the current three
flavour global neutrino data can be accommodated in the SSM, for both
the tree level and one-loop corrected analyses. We find that it is relatively
easier to accommodate the normal hierarchical mass pattern compared to the
inverted hierarchical or quasi-degenerate case, when one-loop corrections are
included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other
minor changes, references adde
- …
