140 research outputs found
Acidic Extracellular pH Promotes Activation of Integrin αvβ3
Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin [alpha]v[beta]3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the [alpha]v[beta]3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin [alpha]v[beta]3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Award Number T32EB006348)Massachusetts Institute of Technology (Collamore-Rogers Fellowship)National Institutes of Health (U.S.) (NIH Cell Migration Consortium Grant U54-GM069668)National Science Foundation (U.S.) (CAREER Award)Singapore-MIT Alliance for Research and Technology (BioSystem and Micromechanics (BioSyM) Interdisciplinary Research Group
Interaction of microtubules and actin during the post-fusion phase of exocytosis
Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis
An apicobasal gradient of Rac activity determines protrusion form and position
Each cell within a polarised epithelial sheet must align and correctly position a wide range of subcellular structures, including actin-based dynamic protrusions. Using in vivo inducible transgenes that can sense or modify Rac activity, we demonstrate an apicobasal gradient of Rac activity that is required to correctly form and position distinct classes of dynamic protrusion along the apicobasal axis of the cell. We show that we can modify the Rac activity gradient in genetic mutants for specific polarity proteins, with consequent changes in protrusion form and position and additionally show, using photoactivatable Rac transgenes, that it is the level of Rac activity that determines protrusion form. Thus, we demonstrate a mechanism by which polarity proteins can spatially regulate Rac activity and the actin cytoskeleton to ensure correct epithelial cell shape and prevent epithelial-to-mesenchymal transitions
Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries
An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration behaviors. This work is motivated by two experimental works: (1) cell migration on 2-D substrates under various fibronectin concentrations and (2) cell spreading on 2-D micropatterned geometries. These works suggest (1) cell migration speed takes a maximum at a particular ligand density (~1140 molecules/µm2) and (2) that strong traction forces at the corners of the patterns may exist due to combined effects exerted by actin stress fibers (SFs). The integrative model of this paper successfully reproduced these experimental results and indicates the mechanism of cell migration and spreading. In this paper, the mechanical structure of the cell is modeled as having two elastic membranes: an outer cell membrane and an inner nuclear membrane. The two elastic membranes are connected by SFs, which are extended from focal adhesions on the cortical surface to the nuclear membrane. In addition, the model also includes ventral SFs bridging two focal adhesions on the cell surface. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bond to ligands on the ECM surface, activate SFs, and form focal adhesions. The relationship between the cell migration speed and fibronectin concentration agrees with existing experimental data for Chinese hamster ovary (CHO) cell migrations on fibronectin coated surfaces. In addition, the integrated model is validated by showing persistent high stress concentrations at sharp geometrically patterned edges. This model will be used as a predictive model to assist in design and data processing of upcoming microfluidic cell migration assays
Nudel and FAK as Antagonizing Strength Modulators of Nascent Adhesions through Paxillin
Competition for binding to the cellular protein paxillin by the proteins Nudel and focal adhesion kinase is important for the proper regulation of cell adhesion and migration
Formin1 Mediates the Induction of Dendritogenesis and Synaptogenesis by Neurogenin3 in Mouse Hippocampal Neurons
Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation
Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow
Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base
Myosin II Motor Proteins with Different Functions Determine the Fate of Lamellipodia Extension during Cell Spreading
Non-muscle cells express multiple myosin-II motor proteins myosin IIA, myosin IIB and myosin IIC transcribed from different loci in the human genome. Due to a significant homology in their sequences, these ubiquitously expressed myosin II motor proteins are believed to have overlapping cellular functions, but the mechanistic details are not elucidated. The present study uncovered a mechanism that coordinates the distinctly localized myosin IIA and myosin IIB with unexpected opposite mechanical roles in maneuvering lamellipodia extension, a critical step in the initiation of cell invasion, spreading, and migration. Myosin IIB motor protein by localizing at the front drives lamellipodia extension during cell spreading. On the other hand, myosin IIA localizes next to myosin IIB and attenuates or retracts lamellipodia extension. Myosin IIA and IIB increase cell adhesion by regulating focal contacts formation in the spreading margins and central part of the spreading cell, respectively. Spreading cells expressing both myosin IIA and myosin IIB motor proteins display an organized actin network consisting of retrograde filaments, arcs and central filaments attached to focal contacts. This organized actin network especially arcs and focal contacts formation in the spreading margins were lost in myosin IIÂ cells. Surprisingly, myosin IIB̂ cells displayed long parallel actin filaments connected to focal contacts in the spreading margins. Thus, with different roles in the regulation of the actin network and focal contacts formation, both myosin IIA and IIB determine the fate of lamellipodia extension during cell spreading
Proteins That Promote Filopodia Stability, but Not Number, Lead to More Axonal-Dendritic Contacts
Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1), a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation
Mouse Acetylcholinesterase Enhances Neurite Outgrowth of Rat R28 Cells Through Interaction With Laminin-1
The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert ‘non-classical’, morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1. A significant increase of neuritic growth as compared with controls was observed for neurons over-expressing AChE. Accordingly, addition of globular AChE to the medium increased total length of neurites. Co-transfection with PRIMA, a membrane anchor of AChE, led to an increase in fiber length similar to AChE overexpressing cells. Transfection with an AChE mutant that leads to the retention of AChE within cells had no stimulatory effect on neurite length. Noticeably, the longest neurites were produced by neurons overexpressing AChE and growing on laminin-1, suggesting that the AChE/laminin interaction is involved in regulating neurite outgrowth. Our findings demonstrate that binding of AChE to laminin-1 alters AChE activity and leads to increased neurite growth in culture. A possible mechanism of the AChE effect on neurite outgrowth is proposed due to the interaction of AChE with laminin-1
- …
