43,798 research outputs found

    Insertion/deletion-related polymorphisms in the human T cell receptor beta gene complex.

    Get PDF
    Insertion/deletion related polymorphisms (IDRP) involving stretches of 15-30 kb within the human TCR-beta gene complex were revealed by pulse-field gel electrophoresis. Two independent IDRP systems were detected by analysis of Sfi I- and Sal I-digested human DNA samples using probes for TCR C and V region gene segments. The allelic nature of these systems was verified in family studies, and mapping data allowed localization of one area of insertion/deletion among the V gene segments and the other near the C region genes. All but one of 50 individuals tested could be typed for the two allelic systems, and gene frequencies for the two allelic forms were 0.37/0.61 and 0.46/0.54, indicating that these polymorphisms are widespread

    Genetic variation in genes interacting with BRCA1/2 and risk of breast cancer in Cypriot population.

    Get PDF
    Inability to correctly repair DNA damage is known to play a role in the development of breast cancer. Single nucleotide polymorphisms (SNPs) of DNA repair genes have been identified, which modify the DNA repair capacity, which in turn may affect the risk of developing breast cancer. To assess whether alterations in DNA repair genes contribute to breast cancer, we genotyped 62 SNPs in 29 genes in 1,109 Cypriot women with breast cancer and 1,177 age-matched healthy controls. Five SNPs were associated with breast cancer. SNPs rs13312840 and rs769416 in the NBS1 gene were associated with a decrease in breast cancer risk (OR TT vs. TC/CC = 0.58; 95% CI, 0.37-0.92; P = 0.019 and OR GG vs. GT/TT = 0.23, 95% CI 0.06-0.85, P = 0.017, respectively). The variant allele of MRE11A rs556477 was also associated with a reduced risk of developing the disease (OR AA vs. AG/GG = 0.76; 95% CI, 0.64-0.91; P = 0.0022). MUS81 rs545500 and PBOV1 rs6927706 SNPs were associated with an increased risk of developing breast cancer (OR GG vs. GC/CC = 1.21, 95% CI, 1.02-1.45; P = 0.031; OR AA vs. AG/GG = 1.53, 95% CI, 1.07-2.18; P = 0.019, respectively). Finally, haplotype-based tests identified significant associations between specific haplotypes in MRE11A and NBS1 genes and breast cancer risk. Further large-scale studies are needed to confirm these results

    High resolution single strand conformation polymorphism analysis using formamide and ethidium bromide staining

    Get PDF
    Single strand conformation polymorphism (SSCP) analysis using ethidium bromide can be improved by adding formamide as the denaturant. This gives higher resolution than previous SSCP methods; it had 100% sensitivity in the discrimination of 14 PCR samples from two different genes, even for a long fragment close to the upper limit of 250 base pairs. This modified procedure is a rapid, simple, safe, and yet highly sensitive method for detecting structural differences in DNA fragments.published_or_final_versio

    A bifunctional kinase-phosphatase in bacterial chemotaxis.

    Get PDF
    addresses: Oxford Centre for Integrative Systems Biology and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.notes: PMCID: PMC2587623types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2008, The National Academy of SciencesPhosphorylation-based signaling pathways employ dephosphorylation mechanisms for signal termination. Histidine to aspartate phosphosignaling in the two-component system that controls bacterial chemotaxis has been studied extensively. Rhodobacter sphaeroides has a complex chemosensory pathway with multiple homologues of the Escherichia coli chemosensory proteins, although it lacks homologues of known signal-terminating CheY-P phosphatases, such as CheZ, CheC, FliY or CheX. Here, we demonstrate that an unusual CheA homologue, CheA(3), is not only a phosphodonor for the principal CheY protein, CheY(6), but is also is a specific phosphatase for CheY(6)-P. This phosphatase activity accelerates CheY(6)-P dephosphorylation to a rate that is comparable with the measured stimulus response time of approximately 1 s. CheA(3) possesses only two of the five domains found in classical CheAs, the Hpt (P1) and regulatory (P5) domains, which are joined by a 794-amino acid sequence that is required for phosphatase activity. The P1 domain of CheA(3) is phosphorylated by CheA(4), and it subsequently acts as a phosphodonor for the response regulators. A CheA(3) mutant protein without the 794-amino acid region lacked phosphatase activity, retained phosphotransfer function, but did not support chemotaxis, suggesting that the phosphatase activity may be required for chemotaxis. Using a nested deletion approach, we showed that a 200-amino acid segment of CheA(3) is required for phosphatase activity. The phosphatase activity of previously identified nonhybrid histidine protein kinases depends on the dimerization and histidine phosphorylation (DHp) domains. However, CheA(3) lacks a DHp domain, suggesting that its phosphatase mechanism is different from that of other histidine protein kinases

    Lagrange Anchor for Bargmann-Wigner equations

    Full text link
    A Poincare invariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s > 1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law.Comment: A contribution to Proceedings of the XXXI Workshop on the Geometric Methods in Physic

    Tissue Engineered Airways: A Prospects Article

    Get PDF
    An ideal tracheal scaffold must withstand luminal collapse yet be flexible, have a sufficient degree of porosity to permit vascular and cellular ingrowth, but also be airtight and must facilitate growth of functional airway epithelium to avoid infection and aid in mucocilliary clearance. Finally, the scaffold must also be biocompatible to avoid implant rejection. Over the last 40 years, efforts to design and manufacture the airway have been undertaken worldwide but success has been limited and far apart. As a result, tracheal resection with primary repair remains the Gold Standard of care for patients presenting with airway disorders and malignancies. However, the maximum resectable length of the trachea is restricted to 30% of the total length in children or 50% in adults. Attempts to provide autologous grafts for human application have also been disappointing for a host of different reasons, including lack of implant integration, insufficient donor organs and poor mechanical strength resulting in an unmet clinical need. The two main approaches researchers have taken to address this issue have been the development of synthetic scaffolds and the use of decellularised organs. To date, a number of different decellularisation techniques and a variety of materials, including polyglycolic acid (PGA) and nanocomposite polymers have been explored. The findings thus far have shown great promise, however there remain a significant number of caveats accompanying each approach. That being said, the possibilities presented by these two approaches could be combined to produce a highly successful, clinically viable hybrid scaffold. This article aims to highlight advances in airway tissue engineering and provide an overview of areas to explore and utilise in accomplishing the aim of a developing an ideal tracheal prosthesis

    Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model.

    Get PDF
    Altered neuronal excitability is emerging as an important feature in Alzheimer's disease (AD). Kv2.1 potassium channels are important modulators of neuronal excitability and synaptic activity. We investigated Kv2.1 currents and its relation to the intrinsic synaptic activity of hippocampal neurons from 3xTg-AD (triple transgenic mouse model of Alzheimer's disease) mice, a widely employed preclinical AD model. Synaptic activity was also investigated by analyzing spontaneous [Ca(2+)]i spikes. Compared with wild-type (Non-Tg (non-transgenic mouse model)) cultures, 3xTg-AD neurons showed enhanced spike frequency and decreased intensity. Compared with Non-Tg cultures, 3xTg-AD hippocampal neurons revealed reduced Kv2.1-dependent Ik current densities as well as normalized conductances. 3xTg-AD cultures also exhibited an overall decrease in the number of functional Kv2.1 channels. Immunofluorescence assay revealed an increase in Kv2.1 channel oligomerization, a condition associated with blockade of channel function. In Non-Tg neurons, pharmacological blockade of Kv2.1 channels reproduced the altered pattern found in the 3xTg-AD cultures. Moreover, compared with untreated sister cultures, pharmacological inhibition of Kv2.1 in 3xTg-AD neurons did not produce any significant modification in Ik current densities. Reactive oxygen species (ROS) promote Kv2.1 oligomerization, thereby acting as negative modulator of the channel activity. Glutamate receptor activation produced higher ROS levels in hippocampal 3xTg-AD cultures compared with Non-Tg neurons. Antioxidant treatment with N-Acetyl-Cysteine was found to rescue Kv2.1-dependent currents and decreased spontaneous hyperexcitability in 3xTg-AD neurons. Analogous results regarding spontaneous synaptic activity were observed in neuronal cultures treated with the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our study indicates that AD-related mutations may promote enhanced ROS generation, oxidative-dependent oligomerization, and loss of function of Kv2.1 channels. These processes can be part on the increased neuronal excitability of these neurons. These steps may set a deleterious vicious circle that eventually helps to promote excitotoxic damage found in the AD brain

    A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light

    Get PDF
    The sensitivity of the circadian system to light allows entrainment of the clock, permitting coordination of plant metabolic function and flowering time across seasons. Light affects the circadian system via both photoreceptors, such as phytochromes and cryptochromes, and sugar production by photosynthesis. In the present study, we introduce a constitutively active version of phytochrome B-Y276H (YHB) into both wild-type and phytochrome null backgrounds of Arabidopsis (Arabidopsis thaliana) to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis. We find that the YHB mutation is sufficient to phenocopy red light input into the circadian mechanism and to sustain robust rhythms in steady-state mRNA levels even in plants grown without light or exogenous sugars. The pace of the clock is insensitive to light intensity in YHB plants, indicating that light input to the clock is constitutively activated by this allele. Mutation of YHB so that it is retained in the cytoplasm abrogates its effects on clock function, indicating that nuclear localization of phytochrome is necessary for its clock regulatory activity. We also demonstrate a role for phytochrome C as part of the red light sensing network that modulates phytochrome B signaling input into the circadian system. Our findings indicate that phytochrome signaling in the nucleus plays a critical role in sustaining robust clock function under red light, even in the absence of photosynthesis or exogenous sources of energy

    On the effect of hydrogen on the elastic moduli and acoustic loss behaviour of Ti-6Al-4V

    Get PDF
    The elastic moduli and acoustic loss behaviour of Ti-6Al-4V (wt.%) in the temperature range 5–298 K have been studied using Resonant Ultrasound Spectroscopy. A peak in the acoustic dissipation was observed at 160 K within the frequency range 250–1000 kHz. Analysis of the data acquired in this study, coupled with complementary data from the literature, showed that this was consistent with a Snoek-like relaxation process with an associated activation energy of 23 3 kJ mol1^{−1}. However, the loss peak was broader than would be expected for a Snoek-like relaxation, and the underlying process was shown to have a spread of relaxation times. It is suggested that this effect arises as a result of variations in the strain experienced by the β phase due to different local microstructural constraint by the bounding secondary α phase.The authors would like to acknowledge Dr M Thomas of TIMET UK for providing compositional analysis, and the EPSRC / Rolls-Royce Strategic Partnership for funding (SLD under EP/H022309/1, NGJ and HJS under EP/H500375/1 and EP/M005607/1). RUS facilities were established in Cambridge through grants from the Natural Environment Research Council of Great Britain (NE/B505738/1 and NE/F017081/1).This is the final version of the article. It first appeared from Taylor & Francis via https://doi.org/10.1080/14786435.2016.119805

    Muscle Fatigue Analysis Using OpenSim

    Full text link
    In this research, attempts are made to conduct concrete muscle fatigue analysis of arbitrary motions on OpenSim, a digital human modeling platform. A plug-in is written on the base of a muscle fatigue model, which makes it possible to calculate the decline of force-output capability of each muscle along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model. Motion data is obtained by motion capturing during an arbitrary running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the force-output capability of these muscles reduced to 60%-70% after 10 minutes' running, on a general basis. Erector spinae, which loses 39.2% of its maximal capability, is found to be more fatigue-exposed than the others. The influence of subject attributes (fatigability) is evaluated and discussed
    corecore