108 research outputs found
Bulk Axions, Brane Back-reaction and Fluxes
Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs)
whose shift symmetry is explicitly broken only by physics localized on branes.
Reliable calculation of their low-energy potential is often difficult because
it requires details of the stabilization of the extra dimensions. In rugby ball
solutions, for which two compact extra dimensions are stabilized in the
presence of only positive-tension brane sources, the effects of brane
back-reaction can be computed explicitly. This allows the calculation of the
shape of the low-energy pGB potential and response of the extra dimensional
geometry as a function of the perturbing brane properties. If the
pGB-dependence is a small part of the total brane tension a very general
analysis is possible, permitting an exploration of how the system responds to
frustration when the two branes disagree on what the proper scalar vacuum
should be. We show how the low-energy potential is given by the sum of brane
tensions (in agreement with common lore) when only the brane tensions couple to
the pGB. We also show how a direct brane coupling to the flux stabilizing the
extra dimensions corrects this result in a way that does not simply amount to
the contribution of the flux to the brane tensions. We calculate the mass of
the would-be zero mode, and briefly describe several potential applications,
including a brane realization of `natural inflation,' and a dynamical mechanism
for suppressing the couplings of the pGB to matter localized on the branes.
Since the scalar can be light enough to be relevant to precision tests of
gravity (in a technically natural way) this mechanism can be relevant to
evading phenomenological bounds.Comment: 36 pages, JHEP styl
Inflation on the Brane with Vanishing Gravity
Many existing models of brane inflation suffer from a steep irreducible
gravitational potential between the branes that causes inflation to end too
early. Inspired by the fact that point masses in 2+1 D exert no gravitational
force, we propose a novel unwarped and non-supersymmetric setup for inflation,
consisting of 3-branes in two extra dimensions compactified on a sphere. The
size of the sphere is stabilized by a combination of a bulk cosmological
constant and a magnetic flux. Computing the 4D effective potential between
probe branes in this background, we find a non-zero contribution only from
exchange of level-1 KK modes of the graviton and radion. Identifying antipodal
points on the 2-sphere projects out these modes, eliminating entirely the
troublesome gravitational contribution to the inflationary potential.Comment: 19 pages, 11 figures, JHEP forma
Topology and symmetry-protected domain wall conduction in quantum Hall nematics
We consider domain walls in nematic quantum Hall ferromagnets predicted to
form in multivalley semiconductors, recently probed by scanning tunnelling
microscopy experiments on Bi(111) surfaces. We show that the domain wall
properties depend sensitively on the filling factor of the underlying
(integer) quantum Hall states. For and in the absence of impurity
scattering we argue that the wall hosts a single-channel Luttinger liquid whose
gaplessness is a consequence of valley and charge conservation. For , it
supports a two-channel Luttinger liquid, which for sufficiently strong
interactions enters a symmetry-preserving thermal metal phase with a charge gap
coexisting with gapless neutral intervalley modes. The domain wall physics in
this state is identical to that of a bosonic topological insulator protected by
symmetry, and we provide a formal mapping between these
problems. We discuss other unusual properties and experimental signatures of
these `anomalous' one-dimensional systems.Comment: 11 pages, 3 figures, published versio
Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry
Models with anomalous U(1) gauge symmetry contain various superfields which
can have nonzero supersymmetry breaking auxiliary components providing the
origin of soft terms in the visible sector, e.g. the U(1) vector superfield,
the modulus or dilaton superfield implementing the Green-Schwarz anomaly
cancellation mechanism, U(1)-charged but standard model singlet matter
superfield required to cancel the Fayet-Iliopoulos term, and finally the
supergravity multiplet. We examine the relative strength between these
supersymmetry breaking components in a simple class of models, and find that
various different mixed mediations of supersymmetry breaking, involving the
modulus, gauge, anomaly and D-term mediations, can be realized depending upon
the characteristics of D-flat directions and how those D-flat directions are
stabilized with a vanishing cosmological constant. We identify two parameters
which represent such properties and thus characterize how the various
mediations are mixed. We also discuss the moduli stabilization and soft terms
in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is
stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure
Regulation of microRNA biogenesis and turnover by animals and their viruses
Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes
Revisiting Coupling Selection Rules in Heterotic Orbifold Models
We study L-point couplings between twisted sector fields in heterotic
orbifold compactifications, using conformal field theory. Selection rules
provide an easy way to identify which couplings are non-vanishing. Those used
in the current literature are gauge invariance, R-charge conservation and the
space group selection rule, but they are not the whole story. We revive and
refine a fourth selection rule, due to symmetries in the underlying torus
lattice, and introduce a fifth one, due to the existence or not of classical
worldsheet instanton solutions to mediate the couplings. We consider briefly
the phenomenological consequences of the additional rules, in particular for
recent orbifold constructions whose field content correspond to that of the
MSSM. The structure of the exotic mass matrices is unaltered and many
dimension-5 proton-decay operators vanish.Comment: 27 pages, v2: several clarifications, matches JHEP version. v3:
supercedes journal version, erratum to appear in JHEP; correction to "rule 5"
equations, main ideas unchange
Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA
- …
