162 research outputs found
XMM-Newton discovery of O VII emission from warm gas in clusters of galaxies
XMM-Newton recently discovered O VII line emission from ~2 million K gas near
the outer parts of several clusters of galaxies. This emission is attributed to
the Warm-Hot Intergalactic Medium. The original sample of clusters studied for
this purpose has been extended and two more clusters with a soft X-ray excess
have been found. We discuss the physical properties of the warm gas, in
particular the density, spatial extent, abundances and temperature.Comment: 8 pages, 3 figures, conference "Soft X-ray emission from clusters of
galaxies and related phenomena", ed. R. Lieu, Kluwer, in pres
A Suborbital Payload for Soft X-ray Spectroscopy of Extended Sources
We present a suborbital rocket payload capable of performing soft X-ray
spectroscopy on extended sources. The payload can reach resolutions of
~100(lambda/dlambda) over sources as large as 3.25 degrees in diameter in the
17-107 angstrom bandpass. This permits analysis of the overall energy balance
of nearby supernova remnants and the detailed nature of the diffuse soft X-ray
background. The main components of the instrument are: wire grid collimators,
off-plane grating arrays and gaseous electron multiplier detectors. This
payload is adaptable to longer duration orbital rockets given its comparatively
simple pointing and telemetry requirements and an abundance of potential
science targets.Comment: Accepted to Experimental Astronomy, 12 pages plus 1 table and 17
figure
The Imprint of Galaxy Formation on X-ray Clusters
It is widely believed that structure in the Universe evolves hierarchically,
as primordial density fluctuations, amplified by gravity, collapse and merge to
form progressively larger systems. The structure and evolution of X-ray
clusters, however, seems at odds with this hierarchical scenario for structure
formation. Poor clusters and groups, as well as most distant clusters detected
to date, are substantially fainter than expected from the tight relations
between luminosity, temperature and redshift predicted by these models. Here we
show that these discrepancies arise because, near the centre, the entropy of
the hot, diffuse intracluster medium (ICM) is higher tha possible if the ICM
is heated at modest redshift (z \ltsim 2) but prior to cluster collapse,
indicating that the formation of galaxies precedes that of clusters and that
most clusters have been assembled very recently.Comment: 5 pages, plus 2 postscript figures (one in colour), accepted for
publication in Natur
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants
International audienceHalopytes are plants able to tolerate high salt concentrations but no clear definition was retained for them. In literature, there are more studies that showed salt-enhanced tolerance to other abiotic stresses compared to investigations that found enhanced salt tolerance by other abiotic stresses in halophytes. The phenomenon by which a plant resistance to a stress induces resistance to another is referred to as cross-tolerance. In this work, we reviewed cross-tolerance in halophytes at the physiological, biochemical, and molecular levels. A special attention was accorded to the cross-tolerance between salinity and organic pollutants that could allow halophytes a higher potential of xenobiotic phytoremediation in comparison with glycophytes
Temporal Integration of Movement: The Time-Course of Motion Streaks Revealed by Masking
Temporal integration in the visual system causes fast-moving objects to leave oriented ‘motion streaks’ in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over 100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving (‘streaky’) and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from to ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks
Meiosis in Mice without a Synaptonemal Complex
The synaptonemal complex (SC) promotes fusion of the homologous chromosomes (synapsis) and crossover recombination events during meiosis. The SC displays an extensive structural conservation between species; however, a few organisms lack SC and execute meiotic process in a SC-independent manner. To clarify the SC function in mammals, we have generated a mutant mouse strain (Sycp1−/−Sycp3−/−, here called SC-null) in which all known SC proteins have been displaced from meiotic chromosomes. While transmission electron microscopy failed to identify any remnants of the SC in SC-null spermatocytes, neither formation of the cohesion axes nor attachment of the chromosomes to the nuclear membrane was perturbed. Furthermore, the meiotic chromosomes in SC-null meiocytes achieved pre-synaptic pairing, underwent early homologous recombination events and sustained a residual crossover formation. In contrast, in SC-null meiocytes synapsis and MLH1-MLH3-dependent crossovers maturation were abolished, whereas the structural integrity of chromosomes was drastically impaired. The variable consequences that SC inactivation has on the meiotic process in different organisms, together with the absence of SC in some unrelated species, imply that the SC could have originated independently in different taxonomic groups
The incidence and health burden of earaches attributable to recreational swimming in natural waters: a prospective cohort study
The First Decade of Science with Chandra and XMM-Newton
NASA's Chandra X-ray Observatory and ESA's XMM-Newton made their first
observations one decade ago. The unprecedented and complementary capabilities
of these observatories to detect, image, and measure the energy of cosmic
X-rays, achieved less than 50 years after the first detection of an extra-solar
X-ray source, represent an increase in sensitivity comparable in going from
naked-eye observations to the most powerful optical telescopes over the past
400 years! In this review, we highlight some of the many discoveries made by
Chandra and XMM-Newton that have transformed 21st century astronomy and briefly
discuss prospects for future research.Comment: 8 pages, 10 figures, published in Natur
Origin of Cosmic Magnetic Fields
We propose that the overlapping shock fronts from young supernova remnants
produce a locally unsteady, but globally steady large scale spiral shock front
in spiral galaxies, where star formation and therefore massive star explosions
correlate geometrically with spiral structure. This global shock front with its
steep gradients in temperature, pressure and associated electric fields will
produce drifts, which in turn give rise to a strong sheet-like electric
current, we propose. This sheet current then produces a large scale magnetic
field, which is regular, and connected to the overall spiral structure. This
rejuvenates the overall magnetic field continuously, and also allows to
understand that there is a regular field at all in disk galaxies. This proposal
connects the existence of magnetic fields to accretion in disks. We not yet
address all the symmetries of the magnetic field here; the picture proposed
here is not complete. X-ray observations may be able to test it already.Comment: 18 pages, no figures; to be published in Proc. Palermo Meeting Sept.
2002, Eds. N. G. Sanchez et al., The Early Universe and the Cosmic Microwave
Background: Theory and Observation
- …
