7,552 research outputs found
Microwave characterization of (Pb,La)TiO₃ thin films integrated on ZrO₂/SiO₂/Si wafers by sol-gel techniques
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid
published_or_final_versio
Genes encoding Pir51, Beclin 1, RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma
Aim: To reveal new tumor markers and target genes from differentially expressed genes of primary tumor samples using cDNA microarray. Methods: The 33P labeled cDNAs were synthesized by reverse transcription of message RNA from the liver cancerous tissue and adjacent non-cancerous liver tissue from the same patient and used to hybridize to LifeGrid 1.0 cDNA microarray blot containing 8400 known and unique human cDNA gene targets, and an expression profile of genes was produced in one paired human liver tumor tissue. After a global analysis of gene expression of 8400 genes, we selected some genes to confirm the differential expression using Northern blot and RT-PCR. Results: Parallel analysis of the hybridized signals enabled us to get an expression profile of genes in which about 500 genes were differentially expressed in the paired liver tumor tissues. We identified 4 genes, the expression of three (Beclin 1, RbAp48 and Pir51) were increased and one (aldolase b) was decreased in liver tumor tissues. In addition, the expression of these genes in 6 hepatoma cell lines was also showed by RT-PCR analysis. Conclusion: cDNA microarray permits a high throughput identification of changes in gene expression. The genes encoding Beclin 1, RbAp48, Pir51 and aldolase b are first reported that may be related with hepatocarcinoma. Copyright © 2004 by The WJG Press ISSN 1007-9327.published_or_final_versio
Asymptomatic members with SOD1 mutation in a large kindred with familial amyotrophic lateral sclerosis have abnormal water diffusion characterisitcs
DTI was carried out in FALS/SALS patients and familial members with SOD1 mutation (AFALS) who may be in a pre-symptomatic phase of ALS. The
changes in FA and TT were investigated in CBT/CST and in whole brain. In FALS/SALS, diffusion pattern changes were found in cerebral peduncle,
internal capsule, sub-cortical white matter, cerebellum and frontal lobe while in AFALS, abnormal pattern could also be detected in the cerebral peduncle,
cerebellum and frontal lobe but with a smaller extent. Our study indicates that DTI can show early diffusion changes in members with SOD1 mutation in
FALS prior to symptom-onset.published_or_final_versio
Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing Studies
published_or_final_versio
Self-organized Ge nanocrystals embedded in HfAlO fabricated by pulsed-laser deposition and application to floating gate memory
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Closed-loop separation control over a sharp edge ramp using Genetic Programming
We experimentally perform open and closed-loop control of a separating
turbulent boundary layer downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has a Reynolds number
based on momentum thickness. The goal of the
control is to mitigate separation and early re-attachment. The forcing employs
a spanwise array of active vortex generators. The flow state is monitored with
skin-friction sensors downstream of the actuators. The feedback control law is
obtained using model-free genetic programming control (GPC) (Gautier et al.
2015). The resulting flow is assessed using the momentum coefficient, pressure
distribution and skin friction over the ramp and stereo PIV. The PIV yields
vector field statistics, e.g. shear layer growth, the backflow area and vortex
region. GPC is benchmarked against the best periodic forcing. While open-loop
control achieves separation reduction by locking-on the shedding mode, GPC
gives rise to similar benefits by accelerating the shear layer growth.
Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid
The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations.
Multifunctional, lipopolyplex formulations comprising a mixture of cationic liposomes and cationic, receptor-targeting peptides have potential use in gene therapy applications. Lipopolyplex formulations described here are typically far more efficient transfection agents than binary lipoplex or polyplex formulations. It has been shown previously that the peptide component mediates both DNA packaging and targeting of the nanoparticle while in this report we investigate the contribution of the lipid component. We hypothesised that the lipid components synergise with the peptides in the transfection process by promoting endosomal escape after lipid bilayer fusion. Lipopolyplexes were prepared with cationic liposomes comprising DOTAP with either neutral lipid DOPE or DOPC. DOPE promotes fusogenic, inverted hexagonal lipid structures while DOPC promotes more stable laminar structures. Lipopolyplexes containing DOPE showed substantially higher transfection efficiency than those formulated with DOPC, both in vitro and in vivo. DOPE-containing lipopolyplexes showed rapid endosomal trafficking and nuclear accumulation of DNA while DOPC-containing formulations remained within the late endo-lysosomal compartments. These findings are consistent with previous finding for the role of DOPE in lipoplexes and support the hypothesis regarding the function of the lipid components in lipopolyplexes. These findings will help to inform future lipopolyplex design, strategies and clinical development processes
Preface
Preface - The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
- …
