1,309 research outputs found
When and where do you want to hide? Recommendation of location privacy preferences with local differential privacy
In recent years, it has become easy to obtain location information quite
precisely. However, the acquisition of such information has risks such as
individual identification and leakage of sensitive information, so it is
necessary to protect the privacy of location information. For this purpose,
people should know their location privacy preferences, that is, whether or not
he/she can release location information at each place and time. However, it is
not easy for each user to make such decisions and it is troublesome to set the
privacy preference at each time. Therefore, we propose a method to recommend
location privacy preferences for decision making. Comparing to existing method,
our method can improve the accuracy of recommendation by using matrix
factorization and preserve privacy strictly by local differential privacy,
whereas the existing method does not achieve formal privacy guarantee. In
addition, we found the best granularity of a location privacy preference, that
is, how to express the information in location privacy protection. To evaluate
and verify the utility of our method, we have integrated two existing datasets
to create a rich information in term of user number. From the results of the
evaluation using this dataset, we confirmed that our method can predict
location privacy preferences accurately and that it provides a suitable method
to define the location privacy preference
Sea anemones may thrive in a high CO2 world
Increased seawater pCO 2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2. Understanding how CO 2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. © 2012 Blackwell Publishing Ltd
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
The Australasian hepatology association consensus guidelines for the provision of adherence support to patients with hepatitis C on direct acting antivirals
© 2016 Richmond et al. Background: Hepatitis C is a blood-borne virus primarily spread through sharing of drug-injecting equipment. Approximately 150 million people worldwide and 230,000 Australians are living with chronic hepatitis C infection. In March 2016, the Australian government began subsidizing direct acting antivirals (DAAs) for the treatment of hepatitis C, which are highly effective (95% cure rate) and have few side effects. However, there is limited evidence to inform the provision of adherence support to people with hepatitis C on DAAs including the level of medication adherence required to achieve a cure. Methodology: In February 2016, a steering committee comprising four authors convened an expert panel consisting of six hepatology nurses, a hepatologist, a pharmacist, a consumer with hepatitis C and treatment experience, and a consumer advocate. The expert panel focused on the following criteria: barriers and enablers to DAA adherence; assessment and monitoring of DAA adherence; components of a patient-centered approach to DAA adherence; patients that may require additional adherence support; and interventions to support DAA adherence. The resultant guidelines underwent three rounds of consultation with the expert panel, Australasian Hepatology Association (AHA) members (n=12), and key stakeholders (n=7) in June 2016. Feedback was considered by the steering committee and incorporated if consensus was achieved. Results: Twenty-four guidelines emerged from the evidence synthesis and expert panel discussion. The guidelines focus on the pretreatment assessment and education, assessment of treatment readiness, and monitoring of medication adherence. The guidelines are embedded in a patient-centered approach which highlights that all patients are at risk of nonadherence. The guidelines recommend implementing interventions focused on identifying patients’ memory triggers and hooks; use of nonconfrontational and nonjudgmental language by health professionals; and objectively monitoring adherence. Conclusion: These are the first guidelines to support patients and health professionals in the delivery of clinical care by identifying practical adherence support interventions for patients taking DAAs
Captive reptile mortality rates in the home and implications for the wildlife trade
The trade in wildlife and keeping of exotic pets is subject to varying levels of national and international regulation and is a topic often attracting controversy. Reptiles are popular exotic pets and comprise a substantial component of the live animal trade. High mortality of traded animals raises welfare concerns, and also has implications for conservation if collection from the wild is required to meet demand. Mortality of reptiles can occur at any stage of the trade chain from collector to consumer. However, there is limited information on mortality rates of reptiles across trade chains, particularly amongst final consumers in the home. We investigated mortality rates of reptiles amongst consumers using a specialised technique for asking sensitive questions, additive Randomised Response Technique (aRRT), as well as direct questioning (DQ). Overall, 3.6% of snakes, chelonians and lizards died within one year of acquisition. Boas and pythons had the lowest reported mortality rates of 1.9% and chameleons had the highest at 28.2%. More than 97% of snakes, 87% of lizards and 69% of chelonians acquired by respondents over five years were reported to be captive bred and results suggest that mortality rates may be lowest for captive bred individuals. Estimates of mortality from aRRT and DQ did not differ significantly which is in line with our findings that respondents did not find questions about reptile mortality to be sensitive. This research suggests that captive reptile mortality in the home is rather low, and identifies those taxa where further effort could be made to reduce mortality rate
Drug Repurposing: Far Beyond New Targets for Old Drugs
Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach is of interest primarily because we continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies. Collecting and making publicly available as much data as possible on the target profile of drugs offer opportunities for drug repurposing, but may limit the commercial applications by patent applications. Certain clinical applications may be more feasible for repurposing than others because of marked differences in side effect tolerance. Other factors that ought to be considered when assessing drug repurposing opportunities include relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs
A people-centred perspective on climate change, environmental stress, and livelihood resilience in Bangladesh
The Ganges–Brahmaputra delta enables Bangladesh to sustain a dense population, but it also exposes people to natural hazards. This article presents findings from the Gibika project, which researches livelihood resilience in seven study sites across Bangladesh. This study aims to understand how people in the study sites build resilience against environmental stresses, such as cyclones, floods, riverbank erosion, and drought, and in what ways their strategies sometimes fail. The article applies a new methodology for studying people’s decision making in risk-prone environments: the personal Livelihood History interviews (N = 28). The findings show how environmental stress, shocks, and disturbances affect people’s livelihood resilience and why adaptation measures can be unsuccessful. Floods, riverbank erosion, and droughts cause damage to agricultural lands, crops, houses, and properties. People manage to adapt by modifying their agricultural practices, switching to alternative livelihoods, or using migration as an adaptive strategy. In the coastal study sites, cyclones are a severe hazard. The study reveals that when a cyclone approaches, people sometimes choose not to evacuate: they put their lives at risk to protect their livelihoods and properties. Future policy and adaptation planning must use lessons learned from people currently facing environmental stress and shocks
Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib
Objectives Danusertib is a serine/threonine kinase inhibitor of multiple kinases, including aurora-A, B, and C. This explorative study aims to identify possible relationships between single nucleotide polymorphisms in genes coding for drug metabolizing enzymes and transporter proteins and clearance of danusertib, to clarify the interpatient variability in exposure. In addition, this study explores the relationship between target receptor polymorphisms and toxicity of danusertib. Methods For associations with clearance, 48 cancer patients treated in a phase I study were analyzed for ABCB1, ABCG2 and FMO3 polymorphisms. Association analyses between neutropenia and drug target receptors, including KDR, RET, FLT3, FLT4, AURKB and AURKA, were performed in 30 patients treated at recommended phase II dose-levels in three danusertib phase I or phase II trials. Results No relationships between danusertib clearance and drug metabolizing enzymes and transporter protein polymorphisms were found. Only, for the one patient with FMO3 18281AA polymorphism, a significantly higher clearance was noticed, compared to patients carrying at least 1 wild type allele. No effect of target receptor genotypes or haplotypes on neutropenia was observed. Conclusions As we did not find any major correlations between pharmacogenetic variability in the studied enzymes and transporters and pharmacokinetics nor toxicity, it is unlikely that danusertib is highly susceptible for pharmacogenetic variation. Therefore, no dosing alterations of danusertib are expected in the future, based on the polymorphisms studied. However, the relationship between FMO3 polymorphisms and clearance of danusertib warrants further research, as we could study only a small group of patients
Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions
- …
