22 research outputs found

    Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study

    Get PDF
    BACKGROUND: Mutations altering BLM function are associated with highly elevated cancer susceptibility (Bloom syndrome). Thus, genetic variants of BLM and proteins that form complexes with BLM, such as TOP3A and RMI1, might affect cancer risk as well. METHODS: In this study we have studied 26 tagged single nucleotide polymorphisms (tagSNPs) in RMI1, TOP3A, and BLM and their associations with cancer risk in acute myeloid leukemia/myelodysplatic syndromes (AML/MDS; N = 152), malignant melanoma (N = 170), and bladder cancer (N = 61). Two population-based control groups were used (N = 119 and N = 156). RESULTS: Based on consistency in effect estimates for the three cancer forms and similar allelic frequencies of the variant alleles in the control groups, two SNPs in TOP3A (rs1563634 and rs12945597) and two SNPs in BLM (rs401549 and rs2532105) were selected for analysis in breast cancer cases (N = 200) and a control group recruited from spouses of cancer patients (N = 131). The rs12945597 in TOP3A and rs2532105 in BLM showed increased risk for breast cancer. We then combined all cases (N = 584) and controls (N = 406) respectively and found significantly increased risk for variant carriers of rs1563634 A/G (AG carriers OR = 1.7 [95%CI 1.1-2.6], AA carriers OR = 1.8 [1.2-2.8]), rs12945597 G/A (GA carriers OR = 1.5 [1.1-1.9], AA carriers OR = 1.6 [1.0-2.5]), and rs2532105 C/T (CT+TT carriers OR = 1.8 [1.4-2.5]). Gene-gene interaction analysis suggested an additive effect of carrying more than one risk allele. For the variants of TOP3A, the risk increment was more pronounced for older carriers. CONCLUSION: These results further support a role of low-penetrance genes involved in BLM-associated homologous recombination for cancer risk

    Effect of Polymorphisms in XPD on Clinical Outcomes of Platinum-Based Chemotherapy for Chinese Non-Small Cell Lung Cancer Patients

    Get PDF
    PURPOSE: Xeroderma pigmentosum group D (XPD) codes for a DNA helicase involved in nucleotide excision repair that removes platinum-induced DNA damage. Genetic polymorphisms of XPD may affect DNA repair capacity and lead to individual differences in the outcome of patients after chemotherapy. This study aims to identify whether XPD polymorphisms affect clinical efficacy among advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. EXPERIMENTAL DESIGN: 353 stage III-IV NSCLC patients receiving platinum-based chemotherapy as the first-line treatment were enrolled in this study. Four potentially functional XPD polymorphisms (Arg(156)Arg, Asp(312)Asn, Asp(711)Asp and Lys(751)Gln) were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or PCR-based sequencing. RESULTS: Variant genotypes of XPD Asp(312)Asn, Asp(711)Asp and Lys(751)Gln were significantly associated with poorer NSCLC survival (P = 0.006, 0.006, 0.014, respectively, by log-rank test). The most common haplotype GCA (in order of Asp(312)Asn, Asp(711)Asp and Lys(751)Gln) also exhibited significant risk effect on NSCLC survival (log-rank P = 0.001). This effect was more predominant for patients with stage IIIB disease (P = 2.21×10(-4), log-rank test). Increased risks for variant haplotypes of XPD were also observed among patients with performance status of 0-1 and patients with adenocarcinoma. However, no significant associations were found between these polymorphisms, chemotherapy response and PFS. CONCLUSIONS: Our study provides evidence for the predictive role of XPD Asp(312)Asn, Asp(711)Asp and Lys(751)Gln polymorphisms/haplotype on NSCLC prognosis in inoperable advanced NSCLC patients treated with platinum-based chemotherapy

    Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study

    Get PDF
    BACKGROUND: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively. METHODS: We used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg(194)Trp, Arg(280)His, Arg(399)Gln, XRCC3 Thr(241)Met and XPD Lys(751)Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption. RESULTS: The XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas. CONCLUSION: Our results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg(280)His polymorphism and a reduced risk associated with the XRCC1 Arg(399)Gln polymorphism. Interestingly, individuals with the XPD Lys(751)Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas

    Rapid effector function of circulating NC16A-specific T cells in individuals with mucous membrane pemphigoid

    No full text
    Background Mucous membrane pemphigoid (MMP) is a chronic blistering skin disease frequently associated with circulating autoantibodies directed to a number of antigens including the NC16A region of BP180. NC16A domain‐specific T cells have been identified in the blood of individuals with bullous pemphigoid (BP), pemphigoid gestationis and linear IgA disease, but there are no data investigating the potential role for such T cells in the pathogenesis of MMP. Objectives To test the hypothesis that NC16A‐specific T cells exist in the peripheral blood of individuals with MMP. Methods We isolated peripheral blood mononuclear cells from 10 patients with MMP, 17 with BP and 10 healthy controls and examined the immunogenicity of overlapping peptides spanning the NC16A domain using interferon (IFN)‐γ enzyme‐linked immunospot assay. Results Significant IFN‐γ production was observed in response to the NC16A peptides in two of the patients with MMP and two of the patients with BP but in none of the normal controls. These data suggest that in a minority of individuals with MMP, NC16A domain‐specific T cells circulate at sufficiently high frequency to be detectable directly ex vivo and to show rapid effector function. Conclusions Overall, these findings are the first to examine the potential role for antigen‐specific autoreactive T cells in the pathogenesis of MMP, and confirm that in some individuals the NC16A domain may be an important target antigen

    A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer.

    No full text
    Exposure to UV radiation is a major risk factor for the development of malignant melanoma. DNA damage caused by UV radiation is thought to play a major role in carcinogenesis induction. Multiprotein pathways involved in repairing UV-DNA damage are the base excision, the nucleotide excision, and the homologous double-stranded DNA repair pathways. This study used a sequence-specific primer PCR (PCR-SSP) genotyping method to investigate the association between polymorphisms in DNA repair genes from these pathways with the development of malignant melanoma. The patient cohort was comprised of 125 individuals with malignant melanoma with lesions or staging suggesting a high risk of relapse or metastatic disease. The control population consisted of 211 individuals. We found the presence of a T allele in exon 7 (position 18067) of the XRCC3 gene was significantly associated with melanoma development (P = 0.004; odds ratio, 2.36; relative risk, 1.74). This gene codes for a protein involved in the homologous pathway of double-stranded DNA repair, thought to repair chromosomal fragmentation, translocations, and deletions. These results may provide further insights into the pathogenesis and the mechanism of UV-radiation induced carcinogenesis as well as having a role in prevention

    Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer

    Get PDF
    DNA repair has an essential role in protecting the genome from damage by endogenous and environmental agents. Polymorphisms in DNA repair genes and differences in repair capacity between individuals have been widely documented. For colorectal cancer, the loss of mismatch repair gene activity is a key genetic determinant. Nucleotide excision repair (NER), recombination repair (RR) and base excision repair (BER) pathways have critical roles in protection against other cancers, and we wished to investigate their role in colorectal cancer. We have compared the frequency of polymorphisms in the NER genes, XPD, XPF, XPG, ERCC1; in the BER gene, XRCC1; and in the RR gene, XRCC3; in colorectal cancer patients and in a control group. No significant associations were found for any of the NER gene polymorphisms or for the XRCC1 polymorphism. The C allele (position 18067) of the XRCC3 gene was weakly but significantly associated with colorectal cancer (odds ratio 1.52, 95% confidence interval 1.04-2.22, P=0.03). For all patients who were heterozygous for any of the repair genes studied, tumour tissue was investigated for loss of heterozygosity (LOH). Only one example of LOH was found for all the genes examined. From the association and LOH data, we conclude that these genes do not have an important role in protection against colorectal carcinogenesis
    corecore