15 research outputs found
Future Fitness of Female Insect Pests in Temporally Stable and Unstable Habitats and Its Impact on Habitat Utility as Refuges for Insect Resistance Management
The long-term fitness of individuals is examined in complex and temporally dynamic ecosystems. We call this multigeneration fitness measure “future fitness”. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a polyphagous insect that feeds on many wild and cultivated hosts. While four generations of H. zea occur during the cropping season in the U.S. Mid Southern agroecosysem, the latter two generations were of most interest, as corn (which has been largely nontransgenic in the Mid-South) dominates the first two generations in the cropping system. In simulations of the evolution of resistance to Bt-transgenic crops, cotton refuge areas were found to be significantly more effective than similar soybean acreages at delaying the evolution of resistance. Cotton is a suitable host for H. zea during two late summer generations, while a soybean field is suitable for only one of these generations, therefore soybean fields of other maturity groups were simulated as being attractive during the alternative generation. A hypothetical soybean variety was tested in which a single field would be attractive over both generations and it was found to be significantly more effective at delaying resistance than simulated conventional soybean varieties. Finally, the placement of individuals emerging at the start of the 3rd (first without corn) generation was simulated in either refuge cotton, conventional soybean and the hypothetical long attractive soybean and the mean number of offspring produced was measured at the end of the season. Although females in conventional and long soybean crops had the same expected fecundity, because of differences in temporal stability of the two crops, the long soybean simulations had significantly more H. zea individuals at the end of the season than the conventional soybean simulations. These simulations demonstrate that the long-term fecundity associated with an individual is dependent not only on the fecundity of that individual in its current habitat, but also the temporal stability of habitats, the ecosystem at large and the likelihood that the individual's offspring will move into different habitats
Within-plant distribution of cotton aphid (Hemiptera: Aphididae) in cotton cultivars with colored fibers
Quantification of diapausing fourth generation and suicidal fifth generation cotton bollworm, Helicoverpa armigera, in cotton and corn in northern China
Cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), is a major pest of cotton and corn crops in northern China. A phenological differentiation between fourth generation cotton bollworms from cotton and those from corn fields was observed in northern China during 1999-2000. The proportion of pupation in late fall was marginally higher in cotton fields compared to that in corn fields; however, the proportions of fall emergence of moths from cotton fields were significantly higher than those from corn fields. The proportion of spring emergence of moths was also significantly higher for larvae collected from cotton (28.0%) than from corn (14.5%). The overwintering duration of females was significantly shorter than that of males in both crops. Moreover, the overwintering duration of bollworm populations from cotton was significantly longer than that from corn. The early spring population of H. armigera came from both cotton and corn fields, but the spring emergence of moths from larvae collected from cotton took about 5 days longer to reach 100% emergence compared to that from corn
Encounters between aphids and their predators: the relative frequencies of disturbance and consumption
Ecologists may wish to evaluate the potential for predators to suppress prey populations through the costs of induced defensive behaviors as well as through consumption. In this paper, we measure the ratio of non-consumptive, defense-inducing encounters relative to consumptive encounters (henceforth the ‘disturbed : consumed ratio’) for two species of aphids and propose that these disturbed : consumed ratios can help evaluate the potential for behaviorally mediated prey suppression. For the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was high, 30 : 1. For the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was low, approximately 1 : 14. These results indicate that the potential for predators to suppress pea aphid populations through induction of defensive behaviors is high, whereas the potential for predators to suppress cotton aphid populations through induced behaviors is low. In measuring the disturbed : consumed ratios of two prey species, this paper makes two novel points: it highlights the variability of the disturbed : consumed ratio, and it offers a simple statistic to help ecologists draw connections between predator–prey behaviors and predator–prey population dynamics
