41 research outputs found
Recommended from our members
In Vitro Fermentation of NUTRIOSE® FB06, a wheat dextrin soluble fibre, in a continuous culture human colonic model system
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota
Recommended from our members
Short-term progression of interstitial lung disease in systemic sclerosis predicts long-term survival in two independent clinical trial cohorts
ObjectiveTo assess survival and identify predictors of survival in patients with systemic sclerosis-interstitial lung disease (SSc-ILD) who participated in the Scleroderma Lung Studies (SLS) I and II.MethodsSLS I randomised 158 patients with SSc-ILD to 1 year of oral cyclophosphamide (CYC) vs placebo. SLS II randomised 142 patients to 1 year of oral CYC followed by 1 year of placebo vs 2 years of mycophenolate mofetil. Counting process Cox proportional hazard modelling identified variables associated with long-term mortality in SLS I and II. Internal validation was performed using joint modelling.ResultsAfter a median follow-up of 8 years, 42% of SLS I patients died, and when known the cause of death was most often attributable to SSc. There was no significant difference in the time to death between treatment arms in SLS I or II. Higher baseline skin score, older age, and a decline in the forced vital capacity (FVC) and the diffusing capacity for carbon monoxide (DLCO) over 2 years were independently associated with an increased risk of mortality in SLS I. The Cox model identified the same mortality predictor variables using the SLS II data.ConclusionIn addition to identifying traditional mortality risk factors in SSc (skin score, age), this study demonstrated that a decline in FVC and DLCO over 2 years was a better predictor of mortality than baseline FVC and DLCO. These findings suggest that short-term changes in surrogate measures of SSc-ILD progression may have important effects on long-term outcomes
On-Chip Spyhole Nanoelectrospray Ionization Mass Spectrometry for Sensitive Biomarker Detection in Small Volumes
Thermoregulatory responses during thermal acclimation in pigs divergently selected for residual feed intake
The objective of this study was to evaluate the performance and thermoregulatory responses during acclimation to high ambient temperature (Ta) of pigs from two lines selected for high (RFI(+)) or low (RFI(-)) residual feed intake with the hypothesis that RFI(-) pigs producing less heat would better tolerate high Ta. Pigs (50 kg initial body weight; 17 per line among which 10 of them were catheterized) were individually housed in a climatic-controlled room where Ta was maintained at 24.2 ± 0.4 °C during 7 days and thereafter at 30.4 ± 0.7 °C during 14 days. Irrespective of Ta, RFI(-) pigs had lower feed intake (ADFI) and similar average daily gain (ADG) than RFI(+) pigs. Whatever the line, ADFI, ADG, and feed efficiency decreased with increased Ta. Overall, the Ta increase resulted in an increase in rectal temperature (RT), skin temperature (ST), and respiratory rate (RR) within the first 24-48 h and, subsequently, in a decrease followed by stabilization. The RT decrease during acclimation occurred 24 h earlier in RFI(-) pigs than in RFI(+). Thyroid hormones and cortisol decreased at high Ta and it was similar in both lines. Based on performance and RT, ST, and RR responses, it seems that selection for low RFI tends to ameliorate pigs' tolerance to high Ta. Nevertheless, this selection does not induce significant differences between lines in endocrine and metabolite responses during thermal stress
