8,033 research outputs found
Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China
We analyze 16-month data of 13 major halocarbons measured at a southern China coastal site in the greater Pearl River Delta (PRD). A total of 188 canister air samples were collected from August 2001 to December 2002. Overall inspection indicated that CH2Cl2, C2Cl 4, and C2HCl3 had similar temporal variations while CFC-11, CFC-12, and CFC-113 showed the same emission patterns during the sampling period. Diurnal variations of halocarbons presented different patterns during ozone episode days, mainly related to emission strength, atmospheric dispersion, and photochemical lifetimes. For further statistics and source appointment, Lagrangian backward particle release simulations were conducted to help understand the potential source regions of all samples and classify them into different categories, including local Hong Kong, inner PRD, continental China, and marine air masses. With the exception of HCFC-142b, the mixing ratios of all halocarbons in marine air were significantly lower than those in urban and regional air (p < 0.01), whereas no significant difference was found between urban Hong Kong and inner PRD regional air, reflecting the dominant impact of the greater PRD regional air on the halocarbon levels. The halocarbon levels in this region were significantly influenced by anthropogenic sources, causing the halocarbon mixing ratios in South China Sea air to be higher than the corresponding background levels, as measured by global surface networks and by airborne missions such as Transport and Chemical Evolution Over the Pacific. Interspecies correlation analysis suggests that CHCl3 is mainly used as a solvent in Hong Kong but mostly as a feedstock for HCFC-22 in the inner PRD. Furthermore, CH3Cl is often used as a refrigerant and emitted from biomass/biofuel burning in the inner PRD. A positive matrix factorization receptor model was applied to the classified halocarbon samples in the greater PRD for source profiles and apportionments. Seven major sources were identified and quantified. Emissions from solvent use were the most significant source of halocarbons (71 ± 9%), while refrigeration was the second largest contributor (18 ± 2%). By further looking at samples from the inner PRD and from urban Hong Kong separately, we found that more solvent was used in the dry cleaning industry in Hong Kong, whereas the contribution of cleaning solvent in the electronic industry was higher in the inner PRD. Besides the two common sources of solvent use and refrigeration, the contributions of biomass/biofuel burning and feedstock in chemical manufacturing was remarkable in the inner PRD but negligible in Hong Kong. These findings are of help to effectively control and phase out the emissions of halocarbons in the greater PRD region of southern China Copyright 2009 by the American Geophysical Union
Ultrafast control of donor-bound electron spins with single detuned optical pulses
The ability to control spins in semiconductors is important in a variety of
fields including spintronics and quantum information processing. Due to the
potentially fast dephasing times of spins in the solid state [1-3], spin
control operating on the picosecond or faster timescale may be necessary. Such
speeds, which are not possible to attain with standard electron spin resonance
(ESR) techniques based on microwave sources, can be attained with broadband
optical pulses. One promising ultrafast technique utilizes single broadband
pulses detuned from resonance in a three-level Lambda system [4]. This
attractive technique is robust against optical pulse imperfections and does not
require a fixed optical reference phase. Here we demonstrate the principle of
coherent manipulation of spins theoretically and experimentally. Using this
technique, donor-bound electron spin rotations with single-pulse areas
exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe
the maximum pulse areas attained do not reflect a fundamental limit of the
technique and larger pulse areas could be achieved in other material systems.
This technique has applications from basic solid-state ESR spectroscopy to
arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum
computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this
work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N.
G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008
Distribution of organochlorine pesticides in a sediment profile of the Pearl River estuary
Author name used in this publication: X. D. LiAuthor name used in this publication: B. X. MaiAuthor name used in this publication: G. ZhangAuthor name used in this publication: G. Y. ShengAuthor name used in this publication: J. M. FuAuthor name used in this publication: O. W. H. WaiAuthor name used in this publication: Y. S. Li2001-2002 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array
We propose a near-infrared super resolution imaging system without a lens or
a mirror but with an array of metallic nanoshell particle chain. The imaging
array can plasmonically transfer the near-field components of dipole sources in
the incoherent and coherent manners and the super resolution images can be
reconstructed in the output plane. By tunning the parameters of the metallic
nanoshell particle, the plasmon resonance band of the isolate nanoshell
particle red-shifts to the near-infrared region. The near-infrared super
resolution images are obtained subsequently. We calculate the field intensity
distribution at the different planes of imaging process using the finite
element method and find that the array has super resolution imaging capability
at near-infrared wavelengths. We also show that the image formation highly
depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure
Searching for plasticity in dissociated cortical cultures on multi-electrode arrays
We attempted to induce functional plasticity in dense cultures of cortical cells using stimulation through extracellular electrodes embedded in the culture dish substrate (multi-electrode arrays, or MEAs). We looked for plasticity expressed in changes in spontaneous burst patterns, and in array-wide response patterns to electrical stimuli, following several induction protocols related to those used in the literature, as well as some novel ones. Experiments were performed with spontaneous culture-wide bursting suppressed by either distributed electrical stimulation or by elevated extracellular magnesium concentrations as well as with spontaneous bursting untreated. Changes concomitant with induction were no larger in magnitude than changes that occurred spontaneously, except in one novel protocol in which spontaneous bursts were quieted using distributed electrical stimulation
The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation
Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry2-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2-/- mutants despite the simultaneous inactivation of Per2. Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters
Skin Cancers Among Albinos at a University Teaching Hospital in Northwestern Tanzania: A Retrospective Review of 64 Cases.
Skin cancers are a major risk associated with albinism and are thought to be a major cause of death in African albinos. The challenges associated with the care of these patients are numerous and need to be addressed. The aim of this study was to outline the pattern and treatment outcome of skin cancers among albinos treated at our centre and to highlight challenges associated with the care of these patients and proffer solutions for improved outcome. This was a retrospective study of all albinos with a histopathological diagnosis of skin cancer seen at Bugando Medical Centre from March 2001 to February 2010. Data collected were analyzed using descriptive statistics. A total of 64 patients were studied. The male to female ratio was 1.5:1. The median age of patients was 30 years. The median duration of illness at presentation was 24 months. The commonest reason for late presentation was financial problem. Head and the neck was the most frequent site afflicted in 46(71.8%) patients. Squamous cell carcinoma was the most common histopathological type in 75% of cases. Surgical operation was the commonest modality of treatment in 60 (93.8%) patients. Radiotherapy was given in 24(37.5%) patients. Twenty-seven (42.2%) of the patients did not complete their treatment due to lack of funds. Local recurrence following surgical treatment was recorded in 6 (30.0%) patients. Only thirty-seven (61.7%) patients were available for follow-up at 6-12 months and the remaining patients were lost to follow-up. Skin cancers are the most common cancers among albinos in our environment. Albinism and exposure to ultraviolet light appears to be the most important risk factor in the development of these cancers. Late presentation and failure to complete treatment due to financial difficulties and lack of radiotherapy services at our centre are major challenges in the care of these patients. Early institution of preventive measures, early presentation and treatment, and follow-up should be encouraged in this population for better outcome
Study of psi(2S) decays to X J/psi
Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million
psi(2S) events collected with the BESI detector, the branching fractions of
psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of
psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta
J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) ->
pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and
B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026
\pm 0.055.Comment: 13 pages, 8 figure
Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients
<br>Background:Prostate cancer cell growth is dependent upon androgen receptor (AR) activation, which is regulated by specific kinases. The aim of the current study is to establish if AR phosphorylation by Cdk1 or ERK1/2 is of prognostic significance.</br> <br>Methods: Scansite 2.0 was utilised to predict which AR sites are phosphorylated by Cdk1 and ERK1/2. Immunohistochemistry for these sites was then performed on 90 hormone-naive prostate cancer specimens. The interaction between Cdk1/ERK1/2 and AR phosphorylation was investigated in vitro using LNCaP cells.</br><br>Results:Phosphorylation of AR at serine 515 (pAR(S515)) and PSA at diagnosis were independently associated with decreased time to biochemical relapse. Cdk1 and pCdk1(161), but not ERK1/2, correlated with pAR(S515). High expression of pAR(S515) in patients with a PSA at diagnosis of ≤20 ng ml(-1) was associated with shorter time to biochemical relapse (P=0.019). This translated into a reduction in disease-specific survival (10-year survival, 38.1% vs 100%, P<0.001). In vitro studies demonstrated that treatment with Roscovitine (a Cdk inhibitor) caused a reduction in pCdk1(161) expression, pAR(S515)expression and cellular proliferation.</br> <br>Conclusion: In prostate cancer patients with PSA at diagnosis of ≤20 ng ml(-1), phosphorylation of AR at serine 515 by Cdk1 may be an independent prognostic marker.</br>
- …
