276 research outputs found
Scale Dependence of Dark Energy Antigravity
We investigate the effects of negative pressure induced by dark energy
(cosmological constant or quintessence) on the dynamics at various
astrophysical scales. Negative pressure induces a repulsive term (antigravity)
in Newton's law which dominates on large scales. Assuming a value of the
cosmological constant consistent with the recent SnIa data we determine the
critical scale beyond which antigravity dominates the dynamics () and discuss some of the dynamical effects implied. We show that
dynamically induced mass estimates on the scale of the Local Group and beyond
are significantly modified due to negative pressure. We also briefly discuss
possible dynamical tests (eg effects on local Hubble flow) that can be applied
on relatively small scales (a few ) to determine the density and equation
of state of dark energy.Comment: Contributed talk at the 2nd Hellenic Cosmology Workshop at NOA
(Athens) Jan. 2001.To appear in the proceedings. Based on work done in
collaboration with M. Axenides and E. Florato
Charged Dilatonic AdS Black Branes in Arbitrary Dimensions
We study electromagnetically charged dilatonic black brane solutions in
arbitrary dimensions with flat transverse spaces, that are asymptotically AdS.
This class of solutions includes spacetimes which possess a bulk region where
the metric is approximately invariant under Lifshitz scalings. Given fixed
asymptotic boundary conditions, we analyze how the behavior of the bulk up to
the horizon varies with the charges and derive the extremality conditions for
these spacetimes.Comment: References update
Evidence for a Positive Cosmological Constant from Flows of Galaxies and Distant Supernovae
Recent observations of high-redshift supernovae seem to suggest that the
global geometry of the Universe may be affected by a `cosmological constant',
which acts to accelerate the expansion rate with time. But these data by
themselves still permit an open universe of low mass density and no
cosmological constant. Here we derive an independent constraint on the lower
bound to the mass density, based on deviations of galaxy velocities from a
smooth universal expansion. This constraint rules out a low-density open
universe with a vanishing cosmological constant, and together the two favour a
nearly flat universe in which the contributions from mass density and the
cosmological constant are comparable. This type of universe, however, seems to
require a degree of fine tuning of the initial conditions that is in apparent
conflict with `common wisdom'.Comment: 8 pages, 1 figure. Slightly revised version. Letter to Natur
Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit
We will investigate the influence of the inhomogeneity of the universe,
especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a
gravitationally bound local system such as the solar system. We concentrate on
the dynamical perturbation to the planetary motion and derive the leading order
effect generated from the LTB model. It will be shown that there appear not
only a well-known cosmological effect arisen from the homogeneous and isotropic
model, such as the Robertson-Walker (RW) model, but also the additional terms
due to the radial inhomogeneity of the LTB model. We will also apply the
obtained results to the problem of secular increase in the astronomical unit,
reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of
the universe cannot have a significant effect for explaining the observed
.Comment: 12 pages, no figure, accepted for publication in Journal of
Astrophysics and Astronom
Is Our Universe Natural?
It goes without saying that we are stuck with the universe we have.
Nevertheless, we would like to go beyond simply describing our observed
universe, and try to understand why it is that way rather than some other way.
Physicists and cosmologists have been exploring increasingly ambitious ideas
that attempt to explain why certain features of our universe aren't as
surprising as they might first appear.Comment: Invited review for Nature, 11 page
Cosmology of the selfaccelerating third order Galileon
In this paper we start from the original formulation of the galileon model
with the original choice for couplings to gravity. Within this framework we
find that there is still a subset of possible Lagrangians that give
selfaccelerating solutions with stable spherically symmetric solutions. This is
a certain constrained subset of the third order galileon which has not been
explored before. We develop and explore the background cosmological evolution
of this model drawing intuition from other even more restricted galileon
models. The numerical results confirm the presence of selfacceleration, but
also reveals a possible instability with respect to galileon perturbations.Comment: 30 pages, 24 figure
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
The quality control theory of aging
The quality control (QC) theory of aging is based on the concept that aging is the result of a reduction in QC of cellular systems designed to maintain lifelong homeostasis. Four QC systems associated with aging are 1) inadequate protein processing in a distressed endoplasmic reticulum (ER); 2) histone deacetylase (HDAC) processing of genomic histones and gene silencing; 3) suppressed AMPK nutrient sensing with inefficient energy utilization and excessive fat accumulation; and 4) beta-adrenergic receptor (BAR) signaling and environmental and emotional stress. Reprogramming these systems to maintain efficiency and prevent aging would be a rational strategy for increased lifespan and improved health. The QC theory can be tested with a pharmacological approach using three well-known and safe, FDA-approved drugs: 1) phenyl butyric acid, a chemical chaperone that enhances ER function and is also an HDAC inhibitor, 2) metformin, which activates AMPK and is used to treat type 2 diabetes, and 3) propranolol, a beta blocker which inhibits BAR signaling and is used to treat hypertension and anxiety. A critical aspect of the QC theory, then, is that aging is associated with multiple cellular systems that can be targeted with drug combinations more effectively than with single drugs. But more importantly, these drug combinations will effectively prevent, delay, or reverse chronic diseases of aging that impose such a tremendous health burden on our society
Strong Ultraviolet Pulse From a Newborn Type Ia Supernova
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs.
Although they are used empirically to measure cosmological distances, the
nature of their progenitors remains mysterious, One of the leading progenitor
models, called the single degenerate channel, hypothesizes that a white dwarf
accretes matter from a companion star and the resulting increase in its central
pressure and temperature ignites thermonuclear explosion. Here we report
observations of strong but declining ultraviolet emission from a Type Ia
supernova within four days of its explosion. This emission is consistent with
theoretical expectations of collision between material ejected by the supernova
and a companion star, and therefore provides evidence that some Type Ia
supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
The Cosmological Constant
This is a review of the physics and cosmology of the cosmological constant.
Focusing on recent developments, I present a pedagogical overview of cosmology
in the presence of a cosmological constant, observational constraints on its
magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity
(http://www.livingreviews.org/), December 199
- …
