1,824 research outputs found

    Evidence of Andreev bound states as a hallmark of the FFLO phase in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2

    Full text link
    Superconductivity is a quantum phenomena arising, in its simplest form, from pairing of fermions with opposite spin into a state with zero net momentum. Whether superconductivity can occur in fermionic systems with unequal number of two species distinguished by spin, atomic hyperfine states, flavor, presents an important open question in condensed matter, cold atoms, and quantum chromodynamics, physics. In the former case the imbalance between spin-up and spin-down electrons forming the Cooper pairs is indyced by the magnetic field. Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed that such imbalanced system can lead to exotic superconductivity in which pairs acquire finite momentum. The finite pair momentum leads to spatially inhomogeneous state consisting of of a periodic alternation of "normal" and "superconducting" regions. Here, we report nuclear magnetic resonance (NMR) measurements providing microscopic evidence for the existence of this new superconducting state through the observation of spin-polarized quasiparticles forming so-called Andreev bound states.Comment: 6 pages, 5 fig

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Search For Heavy Pointlike Dirac Monopoles

    Get PDF
    We have searched for central production of a pair of photons with high transverse energies in ppˉp\bar p collisions at s=1.8\sqrt{s} = 1.8 TeV using 70pb170 pb^{-1} of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610,870,or1580GeV/c2610, 870, or 1580 GeV/c^2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.Comment: 12 pages, 4 figure

    Kinetics of biodegradation of diethylketone by Arthrobacter viscosus

    Get PDF
    The performance of an Arthrobacter viscosus culture to remove diethylketone from aqueous solutions was evaluated. The effect of initial concentration of diethylketone on the growth of the bacteria was evaluated for the range of concentration between 0 and 4.8 g/l, aiming to evaluate a possible toxicological effect. The maximum specific growth rate achieved is 0.221 h-1 at 1.6 g/l of initial diethylketone concentration, suggesting that for higher concentrations an inhibitory effect on the growth occurs. The removal percentages obtained were approximately 88%, for all the initial concentrations tested. The kinetic parameters were estimated using four growth kinetic models for biodegradation of organic compounds available in the literature. The experimental data found is well fitted by the Haldane model (R2 = 1) as compared to Monod model (R2 = 0.99), Powell (R2 = 0.82) and Loung model (R2 = 0.95). The biodegradation of diethylketone using concentrated biomass was studied for an initial diethylketone concentration ranging from 0.8–3.9 g/l in a batch with recirculation mode of operation. The biodegradation rate found followed the pseudo-second order kinetics and the resulting kinetic parameters are reported. The removal percentages obtained were approximately 100%, for all the initial concentrations tested, suggesting that the increment on the biomass concentration allows better results in terms of removal of diethylketone. This study showed that these bacteria are very effective for the removal of diethylketone from aqueous solutions.The authors would like to gratefully acknowledge the financial support of this project by the Fundacao para a Ciencia e Tecnologia (FCT), Ministerio da Ciencia e Tecnologia, Portugal and Fundo Social Europeu (FSE). Cristina Quintelas thanks FCT for a Post-Doc grant

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table

    Do regional brain volumes and major depressive disorder share genetic architecture?:A study of Generation Scotland (<i>n</i>=19,762), UK Biobank (<i>n</i>=24,048) and the English Longitudinal Study of Ageing (<i>n</i>=5,766)

    Get PDF
    Major depressive disorder (MDD) is a heritable and highly debilitating condition. It is commonly associated with subcortical volumetric abnormalities, the most replicated of these being reduced hippocampal volume. Using the most recent published data from Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium's genome-wide association study of regional brain volume, we sought to test whether there is shared genetic architecture between seven subcortical brain volumes and intracranial volume (ICV) and MDD. We explored this using linkage disequilibrium score regression, polygenic risk scoring (PRS) techniques, Mendelian randomisation (MR) analysis and BUHMBOX. Utilising summary statistics from ENIGMA and Psychiatric Genomics Consortium, we demonstrated that hippocampal volume was positively genetically correlated with MDD (rG=0.46, P=0.02), although this did not survive multiple comparison testing. None of the other six brain regions studied were genetically correlated and amygdala volume heritability was too low for analysis. Using PRS analysis, no regional volumetric PRS demonstrated a significant association with MDD or recurrent MDD. MR analysis in hippocampal volume and MDD identified no causal association, however, BUHMBOX analysis identified genetic subgrouping in GS:SFHS MDD cases only (P=0.00281). In this study, we provide some evidence that hippocampal volume and MDD may share genetic architecture in a subgroup of individuals, albeit the genetic correlation did not survive multiple testing correction and genetic subgroup heterogeneity was not replicated. In contrast, we found no evidence to support a shared genetic architecture between MDD and other regional subcortical volumes or ICV

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Kinematically Aligned Total Knee Arthroplasty with Patient-Specific Instrument

    Get PDF
    Kinematically aligned total knee arthroplasty (TKA) is a new alignment technique. Kinematic alignment corrects arthritic deformity to the patient's constitutional alignment in order to position the femoral and tibial components, as well as to restore the knee's natural tibial-femoral articular surface, alignment, and natural laxity. Kinematic knee motion moves around a single flexion-extension axis of the distal femur, passing through the center of cylindrically shaped posterior femoral condyles. Since it can be difficult to locate cylindrical axis with conventional instrument, patient-specific instrument (PSI) is used to align the kinematic axes. PSI was recently introduced as a new technology with the goal of improving the accuracy of operative technique, avoiding practical issues related to the complexity of navigation and robotic system, such as the costs and higher number of personnel required. There are several limitations to implement the kinematically aligned TKA with the implant for mechanical alignment. Therefore, it is important to design an implant with the optimal shape for restoring natural knee kinematics that might improve patient-reported satisfaction and function

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    corecore