24 research outputs found

    Random Matrix Theories in Quantum Physics: Common Concepts

    Full text link
    We review the development of random-matrix theory (RMT) during the last decade. We emphasize both the theoretical aspects, and the application of the theory to a number of fields. These comprise chaotic and disordered systems, the localization problem, many-body quantum systems, the Calogero-Sutherland model, chiral symmetry breaking in QCD, and quantum gravity in two dimensions. The review is preceded by a brief historical survey of the developments of RMT and of localization theory since their inception. We emphasize the concepts common to the above-mentioned fields as well as the great diversity of RMT. In view of the universality of RMT, we suggest that the current development signals the emergence of a new "statistical mechanics": Stochasticity and general symmetry requirements lead to universal laws not based on dynamical principles.Comment: 178 pages, Revtex, 45 figures, submitted to Physics Report

    Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059

    Get PDF
    Background: Sulfate-reducing bacteria (SRB) are key players of the carbon-and sulfur-cycles in the sediments of the world's oceans. Habitat relevant SRBs are often members of the Desulfosarcina-Desulfococcus clade belonging to the deltaproteobacterial family of Desulfobacteraceae. Despite this environmental recognition, their molecular (genome-based) physiology and their potential to contribute to organic carbon mineralization as well as to adapt to changing environmental conditions have been scarcely investigated. A metabolically versatile representative of this family is Desulfococcus multivorans that is able to completely oxidize (to CO2) a variety of organic acids, including fatty acids up to C-14, as well as aromatic compounds. Results: In this study the complete 4.46 Mbp and manually annotated genome of metabolically versatile Desulfococcus multivorans DSM 2059 is presented with particular emphasis on a proteomics-driven metabolic reconstruction. Proteomic profiling covered 17 substrate adaptation conditions (6 aromatic and 11 aliphatic compounds) and comprised 2D DIGE, shotgun proteomics and analysis of the membrane protein-enriched fractions. This comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 170 proteins (154 detected; similar to 91 % coverage). Peripheral degradation routes feed via central benzoyl-CoA, (modified) beta-oxidation or methylmalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO2. Dissimilatory sulfate reduction is fueled by a complex electron transfer network composed of cytoplasmic components (e.g., electron transfer flavoproteins) and diverse membrane redox complexes (Dsr, Qmo, Hmc, Tmc, Qrc, Nuo and Rnf). Overall, a high degree of substrate-specific formation of catabolic enzymes was observed, while most complexes involved in electron transfer appeared to be constitutively formed. Conclusions: A highly dynamic genome structure in combination with substrate-specifically formed catabolic subproteomes and a constitutive subproteome for energy metabolism and electron transfer appears to be a common trait of Desulfobacteraceae members

    Transcriptome Analysis of the Desert Locust Central Nervous System: Production and Annotation of a Schistocerca gregaria EST Database

    Get PDF
    ) displays a fascinating type of phenotypic plasticity, designated as ‘phase polyphenism’. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology

    Ocular drug delivery: emerging approaches and advances

    No full text
    Complex anatomical and physiological barriers make the eye a challenging organ to treat from a drug delivery perspective. Currently available treatment methods (topical eyedrops) for anterior segment diseases pose several limitations in terms of bioavailability and patient compliance. Conventional drug delivery methods to treat posterior segment ocular diseases are primarily intravitreal injection (IVT) of solutions. IVT is highly invasive and leads to retinal toxicity, endophthalmitis, and intraocular inflammation, frequently requiring professional administration and frequent clinical visits. Advanced drug delivery treatment strategies could improve patient compliance and convenience. Long-acting drug delivery platforms (biodegradable or nonbiodegradable) provide sustained/controlled release of drugs for at least four to six months. Smart drug delivery alternatives, for instance, in situ forming implants, are injectable formulations that form semisolid-to-solid implants in response to the various stimuli of pH, light, osmolarity, and temperature. Additionally, nanoparticulate drug delivery systems, contact lenses, electrospun patches, and microneedle-based drug delivery systems provide minimally invasive treatment options for ocular disorders. This comprehensive review focuses on advanced drug delivery options for the management of ocular disorders.<br/
    corecore