3,945 research outputs found
Culex tarsalis is a competent vector species for Cache Valley virus
Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is
an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially
sheep. The importance of CVV in human public health has recently increased because of the report of severe
neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be
determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex
pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species
responsible for the transmission of CVV from viremic vertebrate hosts to humans.
Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this
study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx.
pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from
infected Cx. tarsalis provided evidence supporting its role as a competent vector.
Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis
as a competent vector
Expression of Keratin 10 in Rat Organ Surface Primo-vascular Tissues
AbstractThe primo-vascular system is described as the anatomical structure corresponding to acupuncture meridians and has been identified in several tissues in the body, but its detailed anatomy and physiology are not well understood. Recently, the presence of keratin 10 (Krt10) in primo-vascular tissue was reported, but this finding has not yet been confirmed. In this study, we compared Krt10 expression in primo-vascular tissues located on the surface of rat abdominal organs with Krt10 expression on blood and lymphatic vessels. Krt10 protein (approximately 56.5 kDa) was evaluated by western blot analysis and immunohistochemistry. Krt10 (IR) in the primo-node was visualized as patchy spots around each cell or as a follicle-like structure containing a group of cells. Krt10 IR was also identified in vascular and lymphatic tissues, but its distribution was diffuse over the extracellular matrix of the vessels. Thus Krt10 protein was expressed in all three tissues tested, but the expression pattern of Krt10 in primo-vascular tissue differed from those of blood and lymphatic vascular tissues, suggesting that structural and the regulatory roles of Krt10 in primo-vascular system are different from those in blood and lymphatic vessels
Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging
Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu
High-Throughput Genotyping in Metastatic Esophageal Squamous Cell Carcinoma Identifies Phosphoinositide-3-Kinase and BRAF Mutations
Background: Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy. Methods and Materials We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic) specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%. Results: In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L) (N = 10, 11.5%) followed by MLH1 V384D (N = 7, 8.0%), TP53 (R306, R175H and R273C) (N = 3, 3.5%), BRAF V600E (N = 1, 1.2%), CTNNB1 D32N (N = 1, 1.2%), and EGFR P733L (N = 1, 1.2%). Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower). In addition, there was no difference in frequency of mutations between primary-metastasis paired samples. Conclusions: Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients
Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways.
Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-angstrom extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Delta 19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways
High-Throughput Mutation Profiling Identifies Frequent Somatic Mutations in Advanced Gastric Adenocarcinoma
Background: Gastric cancer is one of the leading cancer types in incidence and mortality, especially in Asia. In order to improve survival, identification of a catalogue of molecular alterations underlying gastric cancer is a critical step for developing and designing genome-directed therapies. Methodology/Principal Findings The Center for Cancer Genome Discovery (CCGD) at the Dana-Farber Cancer Institute (DFCI) has adapted a high-throughput genotyping platform to determine the mutation status of a large panel of known cancer genes. The mutation detection platform, termed OncoMap v4, interrogates 474 “hotspot” mutations in 41 genes that are relevant for cancer. We performed OncoMap v4 in formalin-fixed paraffin-embedded (FFPE) tissue specimens from 237 gastric adenocarcinomas. Using OncoMap v4, we found that 34 (14.4%) of 237 gastric cancer patients harbored mutations. Among mutations we screened, PIK3CA mutations were the most frequent (5.1%) followed by p53 (4.6%), APC (2.5%), STK11 (2.1%), CTNNB1 (1.7%), and CDKN2A (0.8%). Six samples harbored concomitant somatic mutations. Mutations of CTNNB1 were significantly more frequent in EBV-associated gastric carcinoma (P = 0.046). Our study led to the detection of potentially druggable mutations in gastric cancer which may guide novel therapies in subsets of gastric cancer patients. Conclusions/Significance: Using high throughput mutation screening platform, we identified that PIK3CA mutations were the most frequently observed target for gastric adenocarcinoma
Indications of Neutrino Oscillation in a 250 km Long-baseline Experiment
The K2K experiment observes indications of neutrino oscillation: a reduction
of flux together with a distortion of the energy spectrum. Fifty-six
beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the
neutrino production point, with an expectation of .
Twenty-nine one ring -like events are used to reconstruct the neutrino
energy spectrum, which is better matched to the expected spectrum with neutrino
oscillation than without. The probability that the observed flux at SK is
explained by statistical fluctuation without neutrino oscillation is less than
1%.Comment: 5 pages, 3 figures embedded, LaTeX with RevTeX style, accepted for
publication in PRL on December 13, 200
Cloned calves derived from somatic cell nuclear transfer embryos cultured in chemically defined medium or modified synthetic oviduct fluid
Somatic cell nuclear transfer (SCNT) is considered to be a critical tool for propagating valuable animals. To determine the productivity calves resulting from embryos derived with different culture media, enucleated oocytes matured in vitro were reconstructed with fetal fibroblasts, fused, and activated. The cloned embryos were cultured in modified synthetic oviduct fluid (mSOF) or a chemically defined medium (CDM) and developmental competence was monitored. After 7 days of culturing, the blastocysts were transferred into the uterine horn of estrus-synchronized recipients. SCNT embryos that were cultured in mSOF or CDM developed to the blastocysts stages at similar rates (26.6% vs. 22.5%, respectively). A total of 67 preimplantational stage embryos were transferred into 34 recipients and six cloned calves were born by caesarean section, or assisted or natural delivery. Survival of transferred blastocysts to live cloned calves in the mSOF and the CDM was 18.5% (to recipients), 9.6% (to blastocysts) and 42.9% (to recipients), 20.0% (to blastocysts), respectively. DNA analysis showed that all cloned calves were genetically identical to the donor cells. These results demonstrate that SCNT embryos cultured in CDM showed higher viability as judged by survival of the calves that came to term compared to blastocysts derived from mSOF cultures
What are the experiences of foreigners when using technologies to access cultural foods and what are the pain points?
Finding what the pain points are when foreigners that live abroad use technologies to access their cultural food, and providing a design solution
- …
