47,653 research outputs found
Correlated electrons systems on the Apollonian network
Strongly correlated electrons on an Apollonian network are studied using the
Hubbard model. Ground-state and thermodynamic properties, including specific
heat, magnetic susceptibility, spin-spin correlation function, double occupancy
and one-electron transfer, are evaluated applying direct diagonalization and
quantum Monte Carlo. The results support several types of magnetic behavior. In
the strong-coupling limit, the quantum anisotropic spin 1/2 Heisenberg model is
used and the phase diagram is discussed using the renormalization group method.
For ferromagnetic coupling, we always observe the existence of long-range
order. For antiferromagnetic coupling, we find a paramagnetic phase for all
finite temperatures.Comment: 7 pages, 8 figure
Geometrical frustration of an extended Hubbard diamond chain in the quasi-atomic limit
We study the geometrical frustration of extended Hubbard model on diamond
chain, where vertical lines correspond to the hopping and repulsive Coulomb
interaction terms between sites, while the rest of them represent only the
Coulomb repulsion one. The phase diagrams at zero temperature show quite
curious phases: five types of frustrated states and four types of
non-frustrated ones, ordered antiferromagnetically. Although decoration
transformation was derived to spin coupling systems, this approach can be
applied to electron coupling ones. Thus the extended Hubbard model can be
mapped onto another effective extended Hubbard model in atomic limit with
additional three and four-body couplings. This effective model is solved
exactly through transfer matrix method. In addition, using the exact solution
of this model we discuss several thermodynamic properties away from half filled
band, such as chemical potential behavior, electronic density, entropy, where
we study the geometrical frustration, consequently we investigate the specific
heat as well.Comment: 11 pages, 11 figure
A Compound model for the origin of Earth's water
One of the most important subjects of debate in the formation of the solar
system is the origin of Earth's water. Comets have long been considered as the
most likely source of the delivery of water to Earth. However, elemental and
isotopic arguments suggest a very small contribution from these objects. Other
sources have also been proposed, among which, local adsorption of water vapor
onto dust grains in the primordial nebula and delivery through planetesimals
and planetary embryos have become more prominent. However, no sole source of
water provides a satisfactory explanation for Earth's water as a whole. In view
of that, using numerical simulations, we have developed a compound model
incorporating both the principal endogenous and exogenous theories, and
investigating their implications for terrestrial planet formation and
water-delivery. Comets are also considered in the final analysis, as it is
likely that at least some of Earth's water has cometary origin. We analyze our
results comparing two different water distribution models, and complement our
study using D/H ratio, finding possible relative contributions from each
source, focusing on planets formed in the habitable zone. We find that the
compound model play an important role by showing more advantage in the amount
and time of water-delivery in Earth-like planets.Comment: Accepted for publication in The Astrophysical Journa
Comparative analysis of VDMOS/LDMOS power transistors for RF amplifiers
A comparison between the RF performance of vertical and lateral power MOSFETs is presented. The role of each parasitic parameter in the assessment of the power gain, 1-dB compression point, efficiency, stability, and output matching is evaluated quantitatively using new analytical expressions derived from a ten-element model. This study reveals that the contribution of the parasitic parameter on degradation of performance depends upon the specific technology and generic perceptions of source inductance and feedback capacitance in VDMOS degradation may not always hold. This conclusion is supported by a detailed analysis of three devices of the same power rating from three different commercial vendors. A methodology for optimizing a device technology, specifically for RF performance and power amplifier performance is demonstrated
Expected and unexpected products of reactions of 2-hydrazinylbenzothiazole with 3-nitrobenzenesulfonyl chloride in different solvents
Acknowledgements We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections. Funding information MVNdS and JLW thank CNPq (Brazil) for financial support.Peer reviewedPublisher PD
Magnetic Field-Induced Lattice Effects in a Quasi-2D Organic Conductor Close to the Mott Metal-Insulator Transition
We present ultra-high-resolution dilatometric studies in magnetic fields on a
quasi-two-dimensional organic conductor
-(D8-BEDT-TTF)Cu[N(CN)]Br, which is located close to the
Mott metal-insulator (MI) transition. The obtained thermal expansion
coefficient, , reveals two remarkable features: (i) the Mott MI
transition temperature = (13.6 0.6)\,K is insensitive to fields
up to 10\,T, the highest applied field; (ii) for fields along the interlayer
\emph{b}-axis, a magnetic-field-induced (FI) phase transition at =
(9.5 0.5)\,K is observed above a threshold field 1 T,
indicative of a spin reorientation with strong magneto-elastic coupling.Comment: 5 pages, 4 figure
Pairwise thermal entanglement in Ising-XYZ diamond chain structure in an external magnetic field
Quantum entanglement is one of the most fascinating types of correlation that
can be shared only among quantum systems. The Heisenberg chain is one of the
simplest quantum chains which exhibits a reach entanglement feature, due to the
Heisenberg interaction is quantum coupling in the spin system. The two
particles were coupled trough XYZ coupling or simply called as two-qubit XYZ
spin, which are the responsible for the emergence of thermal entanglement.
These two-qubit operators are bonded to two nodal Ising spins, and this process
is repeated infinitely resulting in a diamond chain structure. We will discuss
two-qubit thermal entanglement effect on Ising-XYZ diamond chain structure. The
concurrence could be obtained straightforwardly in terms of two-qubit density
operator elements, using this result, we study the thermal entanglement, as
well as the threshold temperature where entangled state vanishes. The present
model displays a quite unusual concurrence behavior, such as, the boundary of
two entangled regions becomes a disentangled region, this is intrinsically
related to the XY-anisotropy in the Heisenberg coupling. Despite a similar
property had been found for only two-qubit, here we show in the case of a
diamond chain structure, which reasonably represents real materials.Comment: 6 pages, 7 figure
Outcomes For Street Children and Youth Under Multidisciplinary Care in a Drop-In Centre in Tegucigalpa, Honduras
BACKGROUND: There is little evidence to describe the feasibility and outcomes of services for the care of street children and youth in low-income countries. AIMS: To describe the outcomes of a multidisciplinary case management approach delivered in a drop-in centre for street children and youth. METHODS: A longitudinal study of street children and youth followed in an urban drop-in centre. Four hundred (400) street children and youth received a multidisciplinary case management therapeutic package based on the community reinforcement approach. The main outcomes were changes in psychological distress, substance abuse and social situation scores. RESULTS: The median follow-up time for the cohort was 18 months. There were reductions in the levels of psychological distress (p = 0.0001) and substance abuse (p ≤ 0.0001) in the cohort as well as an improvement in the social situation of street children and youth (p = 0.0001). There was a main effect of gender (p < 0.001) and a significant interaction of gender over time (p < 0.001) on improvements in levels of psychological distress. Survival analysis showed that the probability of remaining on substances at 12 months was 0.76 (95% CI: 0.69-0.81) and 0.51 (95% CI: 0.42-0.59) at 24 months. At 12 months, fewer female patients remained using substances compared to male (p < 0.01). CONCLUSION: To be most effective, programmes and strategies for children and youth in street situations in developing countries should target both their health and social needs
- …
