47,653 research outputs found

    Correlated electrons systems on the Apollonian network

    Get PDF
    Strongly correlated electrons on an Apollonian network are studied using the Hubbard model. Ground-state and thermodynamic properties, including specific heat, magnetic susceptibility, spin-spin correlation function, double occupancy and one-electron transfer, are evaluated applying direct diagonalization and quantum Monte Carlo. The results support several types of magnetic behavior. In the strong-coupling limit, the quantum anisotropic spin 1/2 Heisenberg model is used and the phase diagram is discussed using the renormalization group method. For ferromagnetic coupling, we always observe the existence of long-range order. For antiferromagnetic coupling, we find a paramagnetic phase for all finite temperatures.Comment: 7 pages, 8 figure

    Geometrical frustration of an extended Hubbard diamond chain in the quasi-atomic limit

    Full text link
    We study the geometrical frustration of extended Hubbard model on diamond chain, where vertical lines correspond to the hopping and repulsive Coulomb interaction terms between sites, while the rest of them represent only the Coulomb repulsion one. The phase diagrams at zero temperature show quite curious phases: five types of frustrated states and four types of non-frustrated ones, ordered antiferromagnetically. Although decoration transformation was derived to spin coupling systems, this approach can be applied to electron coupling ones. Thus the extended Hubbard model can be mapped onto another effective extended Hubbard model in atomic limit with additional three and four-body couplings. This effective model is solved exactly through transfer matrix method. In addition, using the exact solution of this model we discuss several thermodynamic properties away from half filled band, such as chemical potential behavior, electronic density, entropy, where we study the geometrical frustration, consequently we investigate the specific heat as well.Comment: 11 pages, 11 figure

    A Compound model for the origin of Earth's water

    Full text link
    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which, local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water-delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using D/H ratio, finding possible relative contributions from each source, focusing on planets formed in the habitable zone. We find that the compound model play an important role by showing more advantage in the amount and time of water-delivery in Earth-like planets.Comment: Accepted for publication in The Astrophysical Journa

    Comparative analysis of VDMOS/LDMOS power transistors for RF amplifiers

    Get PDF
    A comparison between the RF performance of vertical and lateral power MOSFETs is presented. The role of each parasitic parameter in the assessment of the power gain, 1-dB compression point, efficiency, stability, and output matching is evaluated quantitatively using new analytical expressions derived from a ten-element model. This study reveals that the contribution of the parasitic parameter on degradation of performance depends upon the specific technology and generic perceptions of source inductance and feedback capacitance in VDMOS degradation may not always hold. This conclusion is supported by a detailed analysis of three devices of the same power rating from three different commercial vendors. A methodology for optimizing a device technology, specifically for RF performance and power amplifier performance is demonstrated

    Expected and unexpected products of reactions of 2-hydrazinylbenzothiazole with 3-nitrobenzenesulfonyl chloride in different solvents

    Get PDF
    Acknowledgements We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections. Funding information MVNdS and JLW thank CNPq (Brazil) for financial support.Peer reviewedPublisher PD

    Magnetic Field-Induced Lattice Effects in a Quasi-2D Organic Conductor Close to the Mott Metal-Insulator Transition

    Full text link
    We present ultra-high-resolution dilatometric studies in magnetic fields on a quasi-two-dimensional organic conductor κ\kappa-(D8-BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, which is located close to the Mott metal-insulator (MI) transition. The obtained thermal expansion coefficient, α(T)\alpha(T), reveals two remarkable features: (i) the Mott MI transition temperature TMIT_{MI} = (13.6 ±\pm 0.6)\,K is insensitive to fields up to 10\,T, the highest applied field; (ii) for fields along the interlayer \emph{b}-axis, a magnetic-field-induced (FI) phase transition at TFIT_{FI} = (9.5 ±\pm 0.5)\,K is observed above a threshold field HcH_c \sim 1 T, indicative of a spin reorientation with strong magneto-elastic coupling.Comment: 5 pages, 4 figure

    Pairwise thermal entanglement in Ising-XYZ diamond chain structure in an external magnetic field

    Full text link
    Quantum entanglement is one of the most fascinating types of correlation that can be shared only among quantum systems. The Heisenberg chain is one of the simplest quantum chains which exhibits a reach entanglement feature, due to the Heisenberg interaction is quantum coupling in the spin system. The two particles were coupled trough XYZ coupling or simply called as two-qubit XYZ spin, which are the responsible for the emergence of thermal entanglement. These two-qubit operators are bonded to two nodal Ising spins, and this process is repeated infinitely resulting in a diamond chain structure. We will discuss two-qubit thermal entanglement effect on Ising-XYZ diamond chain structure. The concurrence could be obtained straightforwardly in terms of two-qubit density operator elements, using this result, we study the thermal entanglement, as well as the threshold temperature where entangled state vanishes. The present model displays a quite unusual concurrence behavior, such as, the boundary of two entangled regions becomes a disentangled region, this is intrinsically related to the XY-anisotropy in the Heisenberg coupling. Despite a similar property had been found for only two-qubit, here we show in the case of a diamond chain structure, which reasonably represents real materials.Comment: 6 pages, 7 figure

    Outcomes For Street Children and Youth Under Multidisciplinary Care in a Drop-In Centre in Tegucigalpa, Honduras

    Get PDF
    BACKGROUND: There is little evidence to describe the feasibility and outcomes of services for the care of street children and youth in low-income countries. AIMS: To describe the outcomes of a multidisciplinary case management approach delivered in a drop-in centre for street children and youth. METHODS: A longitudinal study of street children and youth followed in an urban drop-in centre. Four hundred (400) street children and youth received a multidisciplinary case management therapeutic package based on the community reinforcement approach. The main outcomes were changes in psychological distress, substance abuse and social situation scores. RESULTS: The median follow-up time for the cohort was 18 months. There were reductions in the levels of psychological distress (p = 0.0001) and substance abuse (p ≤ 0.0001) in the cohort as well as an improvement in the social situation of street children and youth (p = 0.0001). There was a main effect of gender (p < 0.001) and a significant interaction of gender over time (p < 0.001) on improvements in levels of psychological distress. Survival analysis showed that the probability of remaining on substances at 12 months was 0.76 (95% CI: 0.69-0.81) and 0.51 (95% CI: 0.42-0.59) at 24 months. At 12 months, fewer female patients remained using substances compared to male (p < 0.01). CONCLUSION: To be most effective, programmes and strategies for children and youth in street situations in developing countries should target both their health and social needs
    corecore