2,582 research outputs found
The Oyster River Culvert Analysis Project
Studies have already detected intensification of precipitation events consistent with climate change projections. Communities may have a window of opportunity to prepare, but information sufficiently quantified and localized to support adaptation programs is sparse: published literature is typically characterized by general resilience building or regional vulnerability studies. The Fourth Assessment Report of the IPCC observed that adaptation can no longer be postponed pending the effective elimination of uncertainty. Methods must be developed that manage residual uncertainty, providing community leaders with decision-support information sufficient for implementing infrastructure adaptation programs. This study developed a local-scale and actionable protocol for maintaining historical risk levels for communities facing significant impacts from climate change and population growth. For a coastal watershed, the study assessed the capacity of the present stormwater infrastructure capacity for conveying expected peak flow resulting from climate change and population growth. The project transferred coupled-climate model projections to the culvert system, in a form understandable to planners, resource managers and decision-makers; applied standard civil engineering methods to reverse-engineer culverts to determine existing and required capacities; modeled the potential for LID methods to manage peak flow in lieu of, or combination with, drainage system upsizing; and estimated replacement costs using local and national construction cost data. The mid-21st century, most likely 25-year, 24-hour precipitation is estimated to be 35% greater than the TP-40 precipitation for the SRES A1b trajectory, and 64% greater than the TP-40 value for the SRES A1fi trajectory. 5% of culverts are already undersized for the TP-40 event to which they should have been designed. Under the most likely A1b trajectory, an additional 12% of culverts likely will be undersized, while under the most likely A1fi scenario, an additional 19% likely will be undersized. These conditions place people and property at greater risk than that historically acceptable from the TP-4025-year design storm. This risk level may be maintained by a long-term upgrade program, utilizing existing strategies to manage uncertainty and costs. At the upper-95% confidence limit for the A1fi 25-year event, 65% of culverts are adequately sized, and building the remaining 35%, and planned, culverts to thrice the cross-sectional area specified from TP-40 should provide adequate capacity through this event. Realizable LID methods can mitigate significant impacts from climate change and population growth, however effectiveness is limited for the more pessimistic climate change projections. Results indicate that uncertainty in coupled-climate model projections is not an impediment to adaptation. This study makes a significant contribution toward the generation of reliable and specific estimates of impacts from climate change, in support of programs to adapt civil infrastructures. This study promotes a solution to today\u27s arguably most significant challenge in civil infrastructure adaptation: translating the extensive corpus of adaptation theory and regional-scale impacts analyses into localscale action
Real-Time Simulation for Verification and Validation of Diagnostic and Prognostic Algorithms
To verify that a health management system (HMS) performs as expected, a virtual system simulation capability, including interaction with the associated platform or vehicle, very likely will need to be developed. The rationale for developing this capability is discussed and includes the limited capability to seed faults into the actual target system due to the risk of potential damage to high value hardware. The capability envisioned would accurately reproduce the propagation of a fault or failure as observed by sensors located at strategic locations on and around the target system and would also accurately reproduce the control system and vehicle response. In this way, HMS operation can be exercised over a broad range of conditions to verify that it meets requirements for accurate, timely response to actual faults with adequate margin against false and missed detections. An overview is also presented of a real-time rocket propulsion health management system laboratory which is available for future rocket engine programs. The health management elements and approaches of this lab are directly applicable for future space systems. In this paper the various components are discussed and the general fault detection, diagnosis, isolation and the response (FDIR) concept is presented. Additionally, the complexities of V&V (Verification and Validation) for advanced algorithms and the simulation capabilities required to meet the changing state-of-the-art in HMS are discussed
The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications
The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases
Logarithmic asymptotics of the densities of SPDEs driven by spatially correlated noise
We consider the family of stochastic partial differential equations indexed
by a parameter \eps\in(0,1], \begin{equation*} Lu^{\eps}(t,x) =
\eps\sigma(u^\eps(t,x))\dot{F}(t,x)+b(u^\eps(t,x)), \end{equation*}
(t,x)\in(0,T]\times\Rd with suitable initial conditions. In this equation,
is a second-order partial differential operator with constant coefficients,
and are smooth functions and is a Gaussian noise, white
in time and with a stationary correlation in space. Let p^\eps_{t,x} denote
the density of the law of u^\eps(t,x) at a fixed point
(t,x)\in(0,T]\times\Rd. We study the existence of \lim_{\eps\downarrow 0}
\eps^2\log p^\eps_{t,x}(y) for a fixed . The results apply to a class
of stochastic wave equations with and to a class of stochastic
heat equations with .Comment: 39 pages. Will be published in the book " Stochastic Analysis and
Applications 2014. A volume in honour of Terry Lyons". Springer Verla
Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide
We sampled interstitial air from the perennial snowpack (firn) at a site near the West Antarctic Ice Sheet Divide (WAIS-D) and analyzed the air samples for a wide variety of gas species and their isotopes. We find limited convective influence (1.4–5.2 m, depending on detection method) in the shallow firn, gravitational enrichment of heavy species throughout the diffusive column in general agreement with theoretical expectations, a ~10 m thick lock-in zone beginning at ~67 m, and a total firn thickness consistent with predictions of Kaspers et al. (2004). Our modeling work shows that the air has an age spread (spectral width) of 4.8 yr for CO<sub>2</sub> at the firn-ice transition. We also find that advection of firn air due to the 22 cm yr<sup>&minus;1</sup> ice-equivalent accumulation rate has a minor impact on firn air composition, causing changes that are comparable to other modeling uncertainties and intrinsic sample variability. Furthermore, estimates of &Delta;age (the gas age/ice age difference) at WAIS-D appear to be largely unaffected by bubble closure above the lock-in zone. Within the lock-in zone, small gas species and their isotopes show evidence of size-dependent fractionation due to permeation through the ice lattice with a size threshold of 0.36 nm, as at other sites. We also see an unequivocal and unprecedented signal of oxygen isotope fractionation within the lock-in zone, which we interpret as the mass-dependent expression of a size-dependent fractionation process
In vivo triglyceride synthesis in subcutaneous adipose tissue of humans correlates with plasma HDL parameters
Backgrounds and aims: Low concentrations of plasma HDL-C are associated with the development of atherosclerotic cardiovascular diseases and type 2 diabetes. Here we aimed to explore the relationship between the in vivo fractional synthesis of triglycerides (fTG) in subcutaneous (s.q.) abdominal adipose tissue (AT), HDL-C concentrations and HDL particle size composition in non-diabetic humans. Methods: The fTG in s.q. abdominal AT was measured in 16 non-diabetic volunteers (7 women, 9 men; Age: 49 ± 20 years; BMI: 31 ± 5 kg/m; Fasting Plasma Glucose: 90 ± 10 mg/dl) after 2H2O labeling. HDL-C concentration and subclasses, large (L-HDL), intermediate (I-HDL) and small (S-HDL) were measured. Results: Linear regression analyses demonstrated significant associations of fTG with plasma concentration of HDL-C (r = 0.625,p = 0.009) and percent contribution of L-HDL (r = 0.798,p < 0.001), I-HDL (r = -0.765,p < 0.001) and S-HDL (r = -0.629, p = 0.009). When analyses were performed by gender, the associations remained significant in women (HDL-C: r = 0.822,p = 0.023; L-HDL: r = 0.892,p = 0.007; I-HDL: r = -0.927,p = 0.003) but not men. Conclusions: Our study demonstrated an in vivo association between subcutaneous abdominal adipose tissue lipid dynamics and HDL parameters in humans, but this was true for women not men. Positive association with L-HDL and negative with I-HDL suggest that subcutaneous abdominal adipose tissue lipid dynamics may play an important role in production of mature functional HDL particles. Further studies evaluating the mechanism responsible for these associations and the observed gender differences are important and warranted to identify potential novel targets of intervention to increase the production of atheroprotective subclasses of HDL-Cs and thus decreasing the risks of development of atherosclerotic conditions
The broad iron Kalpha line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode
We present the analysis of the broadened, flourescent iron Kalpha line in
simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-1. The
XMM-Newton data were taken in a modified version of the timing mode of the
EPIC-pn camera. In this mode the lower energy threshold of the instrument is
increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the
source, while at the same time preserving the signal-to-noise ratio in the Fe
Kalpha band. We find that the best-fit spectrum consists of the sum of an
exponentially cut off power-law and relativistically smeared, ionized
reflection. The shape of the broadened Fe Kalpha feature is due to strong
Compton broadening combined with relativistic broadening. Assuming a standard,
thin accretion disk, the black hole is close to rotating maximally.Comment: Astron. Astrophys., in pres
On the Role of the Accretion Disk in Black Hole Disk-Jet Connections
Models of jet production in black hole systems suggest that the properties of
the accretion disk - such as its mass accretion rate, inner radius, and
emergent magnetic field - should drive and modulate the production of
relativistic jets. Stellar-mass black holes in the "low/hard" state are an
excellent laboratory in which to study disk-jet connections, but few
coordinated observations are made using spectrometers that can incisively probe
the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1
made in the jet-producing low/hard state. Contemporaneous radio monitoring was
done using the Arcminute MicroKelvin Array radio telescope. Two important and
simple results are obtained: (1) the jet (as traced by radio flux) does not
appear to be modulated by changes in the inner radius of the accretion disk;
and (2) the jet is sensitive to disk properties, including its flux,
temperature, and ionization. Some more complex results may reveal aspects of a
coupled disk-corona-jet system. A positive correlation between the reflected
X-ray flux and radio flux may represent specific support for a plasma ejection
model of the corona, wherein the base of a jet produces hard X-ray emission.
Within the framework of the plasma ejection model, the spectra suggest a jet
base with v/c ~ 0.3, or the escape velocity for a vertical height of z ~ 20
GM/c^2 above the black hole. The detailed results of X-ray disk continuum and
reflection modeling also suggest a height of z ~ 20 GM/c^2 for hard X-ray
production above a black hole, with a spin in the range 0.6 < a < 0.99. This
height agrees with X-ray time lags recently found in Cygnus X-1. The overall
picture that emerges from this study is broadly consistent with some
jet-focused models for black hole spectral energy distributions in which a
relativistic plasma is accelerated at z = 10-100 GM/c^2.Comment: Accepted for publication in Ap
An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation
This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety
- …
