117 research outputs found
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes
Most of the cell biological aspects of retroviral genome dimerization remain unknown. Murine leukemia virus (MLV) constitutes a useful model to study when and where dimerization occurs within the cell. For instance, MLV produces a subgenomic RNA (called SD') that is co-packaged with the genomic RNA predominantly as FLSD' heterodimers. This SD' RNA is generated by splicing of the genomic RNA and also by direct transcription of a splice-associated retroelement of MLV (SDARE). We took advantage of these two SD' origins to study the effects of transcription and splicing events on RNA dimerization. Using genetic approaches coupled to capture of RNA heterodimer in virions, we determined heterodimerization frequencies in different cellular contexts. Several cell lines were stably established in which SD' RNA was produced by either splicing or transcription from SDARE. Moreover, SDARE was integrated into the host chromosome either concomitantly or sequentially with the genomic provirus. Our results showed that transcribed genomic and SD' RNAs preferentially formed heterodimers when their respective proviruses were integrated together. In contrast, heterodimerization was strongly affected when the two proviruses were integrated independently. Finally, dimerization was enhanced when the transcription sites were expected to be physically close. For the first time, we report that splicing and RNA dimerization appear to be coupled. Indeed, when the RNAs underwent splicing, the FLSD' dimerization reached a frequency similar to co-transcriptional heterodimerization. Altogether, our results indicate that randomness of heterodimerization increases when RNAs are co-expressed during either transcription or splicing. Our results strongly support the notion that dimerization occurs in the nucleus, at or near the transcription and splicing sites, at areas of high viral RNA concentration
NT-proBNP and Circulating Inflammation Markers in Prediction of a Normal Myocardial Scintigraphy in Patients with Symptoms of Coronary Artery Disease
Myocardial perfusion imaging (MPI) can detect myocardial perfusion abnormalities but many examinations are without pathological findings. This study examines whether circulating biomarkers can be used as screening modality prior to MPI.243 patients with an intermediate risk of CAD or with known CAD with renewed suspicion of ischemia were referred to MPI. Blood samples were analyzed for N-terminal fragment of the prohormone brain natriuretic peptide (NT-proBNP), YKL-40, IL-6, matrix metalloproteinase 9 (MMP-9) and high sensitive C-reactive protein (hsCRP). Patients with myocardial perfusion defects had elevated levels of NT-proBNP (p<0.0001), YKL-40 (p = 0.03) and IL-6 (p = 0.03) but not of hsCRP (p = 0.58) nor of MMP-9 (p = 0.14). The NT-proBNP increase was observed in both genders (p<0.0001), whereas YKL-40 (p = 0.005) and IL-6 (p = 0.02) were elevated only in men. A NT-proBNP cut off-concentration at 25 ng/l predicted a normal MPI with a negative predictive value >95% regardless of existing CAD.20-25% of patients suspected of CAD could have been spared a MPI by using a NT-proBNP cut-off concentration at 25 ng/l with a negative predictive value >95%. NT-proBNP has the potential use of being a screening marker of CAD before referral of the patient to MPI
Acute appendicitis: transcript profiling of blood identifies promising biomarkers and potential underlying processes
Background The diagnosis of acute appendicitis can be surprisingly difficult without computed tomography, which carries significant radiation exposure. Circulating blood cells may carry informative changes in their RNA expression profile that would signal internal infection or inflammation of the appendix. Methods Genome-wide expression profiling was applied to whole blood RNA of acute appendicitis patients versus patients with other abdominal disorders, in order to identify biomarkers of appendicitis. From a large cohort of emergency patients, a discovery set of patients with surgically confirmed appendicitis, or abdominal pain from other causes, was identified. RNA from whole blood was profiled by microarrays, and RNA levels were filtered by a combined fold-change (\u3e2) and p value (\u3c0.05). A separate set of patients, including patients with respiratory infections, was used to validate a partial least squares discriminant (PLSD) prediction model. Results Transcript profiling identified 37 differentially expressed genes (DEG) in appendicitis versus abdominal pain patients. The DEG list contained 3 major ontologies: infection-related, inflammation-related, and ribosomal processing. Appendicitis patients had lower level of neutrophil defensin mRNA (DEFA1,3), but higher levels of alkaline phosphatase (ALPL) and interleukin-8 receptor-ß (CXCR2/IL8RB), which was confirmed in a larger cohort of 60 patients using droplet digital PCR (ddPCR). Conclusions Patients with acute appendicitis have detectable changes in the mRNA expression levels of factors related to neutrophil innate defense systems. The low defensin mRNA levels suggest that appendicitis patient’s immune cells are not directly activated by pathogens, but are primed by diffusible factors in the microenvironment of the infection. The detected biomarkers are consistent with prior evidence that biofilm-forming bacteria in the appendix may be an important factor in appendicitis
The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics
Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting
major outbreaks every 2–4 years. Attempts to explain the patterns of
periodicity and persistence using simple direct transmission models are
unsuccessful. Motivated by empirical evidence, we examine the contribution of an
overlooked AIV transmission mode: environmental transmission. It is known that
infectious birds shed large concentrations of virions in the environment, where
virions may persist for a long time. We thus propose that, in addition to direct
fecal/oral transmission, birds may become infected by ingesting virions that
have long persisted in the environment. We design a new host–pathogen
model that combines within-season transmission dynamics, between-season
migration and reproduction, and environmental variation. Analysis of the model
yields three major results. First, environmental transmission provides a
persistence mechanism within small communities where epidemics cannot be
sustained by direct transmission only (i.e., communities smaller than the
critical community size). Second, environmental
transmission offers a parsimonious explanation of the 2–4 year
periodicity of avian influenza epidemics. Third, very low levels of
environmental transmission (i.e., few cases per year) are sufficient for avian
influenza to persist in populations where it would otherwise vanish
Vaccination against Heterologous R5 Clade C SHIV: Prevention of Infection and Correlates of Protection
A safe, efficacious vaccine is required to stop the AIDS pandemic. Disappointing results from the STEP trial implied a need to include humoral anti-HIV-1 responses, a notion supported by RV144 trial data even though correlates of protection are unknown. We vaccinated rhesus macaques with recombinant simian immunodeficiency virus (SIV) Gag-Pol particles, HIV-1 Tat and trimeric clade C (HIV-C) gp160, which induced cross-neutralizing antibodies (nAbs) and robust cellular immune responses. After five low-dose mucosal challenges with a simian-human immunodeficiency virus (SHIV) that encoded a heterologous R5 HIV-C envelope (22.1% divergence from the gp160 immunogen), 94% of controls became viremic, whereas one third of vaccinees remained virus-free. Upon high-dose SHIV rechallenge, all controls became infected, whereas some vaccinees remained aviremic. Peak viremia was inversely correlated with both cellular immunity (p<0.001) and cross-nAb titers (p<0.001). These data simultaneously linked cellular as well as humoral immune responses with the degree of protection for the first time
Controversies surrounding human papilloma virus infection, head & neck vs oral cancer, implications for prophylaxis and treatment
Head & Neck Cancer (HNC) represents the sixth most common malignancy worldwide and it is historically linked to well-known behavioural risk factors, i.e., tobacco smoking and/or the alcohol consumption. Recently, substantial evidence has been mounting that Human Papillomavirus (HPV) infection is playing an increasing important role in oral cancer. Because of the attention and clamor surrounding oral HPV infection and related cancers, as well as the use of HPV prophylactic vaccines, in this invited perspective the authors raise some questions and review some controversial issues on HPV infection and its role in HNC, with a particular focus on oral squamous cell carcinoma
Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection
Patients' perceived needs of osteoarthritis health information: A systematic scoping review
Background: Optimal management of osteoarthritis requires active patient participation. Understanding patients’ perceived health information needs is important in order to optimize health service delivery and health outcomes in osteoarthritis. We aimed to review the existing literature regarding patients’ perceived health information needs for OA. Methods: A systematic scoping review was performed of publications in MEDLINE, EMBASE, CINAHL and PsycINFO (1990–2016). Descriptive data regarding study design and methodology were extracted and risk of bias assessed. Aggregates of patients’ perceived needs of osteoarthritis health information were categorized. Results: 30 studies from 2876 were included: 16 qualitative, 11 quantitative and 3 mixed-methods studies. Three areas of perceived need emerged: (1) Need for clear communication: terms used were misunderstood or had unintended connotations. Patients wanted clear explanations. (2) Need for information from various sources: patients wanted accessible health professionals with specialist knowledge of arthritis. The Internet, whilst a source of information, was acknowledged to have dubious reliability. Print media, television, support groups, family and friends were utilised to fulfil diverse information needs. (3) Needs of information content: patients desired more information about diagnosis, prognosis, management and prevention. Conclusions: Patients desire more information regarding the diagnosis of osteoarthritis, its impact on daily life and its long-term prognosis. They want more information not only about pharmacological management options, but also non-pharmacological options to help them manage their symptoms. Also, patients wanted this information to be delivered in a clear manner from multiple sources of health information. To address these gaps, more effective communication strategies are required. The use of a variety of sources and modes of delivery may enable the provision of complementary material to provide information more successfully, resulting in better patient adherence to guidelines and improved health outcomes
- …
