393 research outputs found
Controversies in the management of primary sclerosing cholangitis
Primary sclerosing cholangitis (PSC) remains a rare but significant disease, which affects mainly young males in association with inflammatory bowel disease. There have been few advances in the understanding of the pathogenesis of the condition and no therapeutics with proven mortality benefit aside from liver transplantation. There remain areas of controversy in the management of PSC which include the differentiation from other cholangiopathies, in particular immunoglobulin G4 related sclerosing cholangitis, the management of dominant biliary strictures, and the role of ursodeoxycholic acid. In addition, the timing of liver transplantation in PSC remains difficult to predict with standard liver severity scores. In this review, we address these controversies and highlight the latest evidence base in the management of PSC
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
We present the temperature and polarization angular power spectra measured by
the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time
data collected during 2013-14 using two detector arrays at 149 GHz, from 548
deg of sky on the celestial equator. We use these spectra, and the spectra
measured with the MBAC camera on ACT from 2008-10, in combination with Planck
and WMAP data to estimate cosmological parameters from the temperature,
polarization, and temperature-polarization cross-correlations. We find the new
ACTPol data to be consistent with the LCDM model. The ACTPol
temperature-polarization cross-spectrum now provides stronger constraints on
multiple parameters than the ACTPol temperature spectrum, including the baryon
density, the acoustic peak angular scale, and the derived Hubble constant.
Adding the new data to planck temperature data tightens the limits on damping
tail parameters, for example reducing the joint uncertainty on the number of
neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation.
Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Visual attention and action: How cueing, direct mapping, and social interactions drive orienting
Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated
Effect of population stratification analysis on false-positive rates for common and rare variants
Principal components analysis (PCA) has been successfully used to correct for population stratification in genome-wide association studies of common variants. However, rare variants also have a role in common disease etiology. Whether PCA successfully controls population stratification for rare variants has not been addressed. Thus we evaluate the effect of population stratification analysis on false-positive rates for common and rare variants at the single-nucleotide polymorphism (SNP) and gene level. We use the simulation data from Genetic Analysis Workshop 17 and compare false-positive rates with and without PCA at the SNP and gene level. We found that SNPs’ minor allele frequency (MAF) influenced the ability of PCA to effectively control false discovery. Specifically, PCA reduced false-positive rates more effectively in common SNPs (MAF > 0.05) than in rare SNPs (MAF < 0.01). Furthermore, at the gene level, although false-positive rates were reduced, power to detect true associations was also reduced using PCA. Taken together, these results suggest that sequence-level data should be interpreted with caution, because extremely rare SNPs may exhibit sporadic association that is not controlled using PCA
The BSR-PsA:study protocol for the British Society for Rheumatology psoriatic arthritis register
Acknowledgements We acknowledge contribution of BSR-PsA study staff, under the supervision of KFK: Maureen Heddle, Barry Morris, Jonathan Lock and Jane Brady. We also acknowledge the support from the Centre for Healthcare Randomised Trials (CHaRT) at the University of Aberdeen, especially Mark Forrest and Brian Taylor, for database and IT support. We would like to thank Professor Iain McInnes from the University of Glasgow, and our International Advisory Committee (Professors Merete Hetland, Oliver Fitzgerald and Philip Mease), for their comments when developing the protocol and for advice in harmonising data collection with other international studies, and the staff at the British Society for Rheumatology, in particular Alan Roach, Ross Matthews, Chris Hiley and Debbie MacDonald. Finally, we are indebted to the staff at all participating NHS trusts (details of which are available from www.abdn.ac.uk/bsr-psa) and especially the NIHR Clinical Research Network research nurses for their assistance with participant recruitment and data collection. Funding The BSR-PsA is funded by the BSR as part of its rheumatology registers portfolio and, in turn, receives funding for this from pharmaceutical companies. At the time of publication, only Amgen (previously Celgene) have contributed to the funding of the BSR-PsA. Pharmaceutical companies providing funds to BSR do not participant in the conduct or oversight of the study. However, they do receive advance notice of publications on which they are able to comment. Companies contributing to the funding of the register can request anonymised data on clinically confirmed serious adverse events and some events of special interest (e.g. pregnancy) among participants prescribed the specific bDMARD or tsDMARD agents that they manufacture. Other than this information, they do not have access to any raw data. They may, however, request specific analyses to be performed, for which a pre-specific analysis plan is discussed, and additional funds are provided.Peer reviewedPublisher PD
Correction: International Society of Sports Nutrition position stand: Nutrient timing
Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake
- …
