57 research outputs found

    Prevalence, Features and Risk Factors for Malaria Co-Infections amongst Visceral Leishmaniasis Patients from Amudat Hospital, Uganda

    Get PDF
    Visceral leishmaniasis (VL) and malaria are two major parasitic diseases sharing a similar demographic and geographical distribution. In areas where both diseases are endemic, such as Sudan, Uganda, India and Bangladesh, co-infection cases have been reported, but features and risk factors associated with these co-morbidities remain poorly characterized. In the present study, routinely collected data of VL patients admitted to Amudat Hospital, Uganda, were used to investigate the magnitude of VL-malaria co-infections and identify possible risk factors. Nearly 20% of the patients included in this study were found to be co-infected with VL and malaria, indicating that this is a common condition among VL patients living in malaria endemic areas. Young age (≤9 years) was identified as an important risk factor for contracting the VL-malaria co-infection, while being anemic or carrying a skin infection appeared to negatively correlate with the co-morbidity. Co-infected patients presented with slightly more severe symptoms compared to mono-infected patients, but had a similar prognosis, possibly due to early diagnosis of malaria as a result of systematic testing. In conclusion, these results emphasize the importance of performing malaria screening amongst VL patients living in malaria-endemic areas and suggest that close monitoring of co-infected patients should be implemented

    Vaccine Platforms Combining Circumsporozoite Protein and Potent Immune Modulators, rEA or EAT-2, Paradoxically Result in Opposing Immune Responses

    Get PDF
    Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo

    Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Full text link
    The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject

    Time for T? Immunoinformatics addresses the challenges of vaccine design for neglected tropical and emerging infectious diseases

    Get PDF
    Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere

    Calling where it counts:Subordinate pied babblers target the audience of their vocal advertisements

    Get PDF
    For territorial group-living species, opportunities to reproduce on the natal territory can be limited by a number of factors including the availability of resources within a territory, access to unrelated individuals, and monopolies on reproduction by dominant group members. Individuals looking to reproduce are therefore faced with the options of either waiting for a breeding opportunity to arise in the natal territory, or searching for reproductive opportunities in non-natal groups. In the cooperatively breeding Southern pied babbler, Turdoides bicolor, most individuals who achieve reproductive success do so through taking up dominant breeding positions within non-natal groups. For subordinate pied babblers therefore, searching for breeding opportunities in non-natal groups is of primary importance as this represents the major route to reproductive success. However, prospecting (where individuals leave the group to search for reproductive opportunities within other groups) is costly and individuals rapidly lose weight when not part of a group. Here we demonstrate that subordinate pied babblers adopt an alternative strategy for mate attraction by vocal advertisement from within their natal territories. We show that subordinates focus their calling efforts on the edges of their territory, and specifically near boundaries with neighbouring groups that have potential breeding partners (unrelated individuals of the opposite sex). In contrast to prospecting, calling individuals showed no body mass loss associated with this behaviour, suggesting that calling from within the group may provide a 'cheap' advertisement strategy. Additionally, we show that subordinates use information regarding the composition of neighbouring groups to target the greatest number of potential mating partners

    Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis

    Full text link

    DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity

    Get PDF
    Contains fulltext : 118242.pdf (publisher's version ) (Open Access)BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-gamma ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-gamma mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987

    The Reproductive Ecology of Industrial Societies, Part I : Why Measuring Fertility Matters.

    Get PDF
    Is fertility relevant to evolutionary analyses conducted in modern industrial societies? This question has been the subject of a highly contentious debate, beginning in the late 1980s and continuing to this day. Researchers in both evolutionary and social sciences have argued that the measurement of fitness-related traits (e.g., fertility) offers little insight into evolutionary processes, on the grounds that modern industrial environments differ so greatly from those of our ancestral past that our behavior can no longer be expected to be adaptive. In contrast, we argue that fertility measurements in industrial society are essential for a complete evolutionary analysis: in particular, such data can provide evidence for any putative adaptive mismatch between ancestral environments and those of the present day, and they can provide insight into the selection pressures currently operating on contemporary populations. Having made this positive case, we then go on to discuss some challenges of fertility-related analyses among industrialized populations, particularly those that involve large-scale databases. These include "researcher degrees of freedom" (i.e., the choices made about which variables to analyze and how) and the different biases that may exist in such data. Despite these concerns, large datasets from multiple populations represent an excellent opportunity to test evolutionary hypotheses in great detail, enriching the evolutionary understanding of human behavior
    corecore