20 research outputs found
The effect of 1 week of repeated ischaemic leg preconditioning on simulated Keirin cycling performance: a randomised trial
Background Coaches continually seek new ways of
doing things and also refine existing techniques to
improve sporting performance. Coaches are currently
experimenting using ischaemic preconditioning (IPC)
over consecutive days in the hope of improving
competitive performances.
Aims First, to quantify the physiological impact of
1 week of IPC on simulated Keirin cycling performance.
Second, to investigate if biochemical stress markers
are affected over the treatment period.
Methods Using a randomised, sham-controlled
design, 18 active adults undertook seven consecutive
days of IPC treatment (45 min occlusion/reperfusion)
applied to each leg at either 220 mm Hg (treatment,
n=9) or 20 mm Hg (sham, n=9). Urinary measures of
inflammation, oxidative stress and indirect nitric oxide
synthesis were undertaken daily. A simulated Keirin
cycling competition (430 s Wingate tests) was
performed on day 10, with baseline and
postintervention cycling VO2max (days 1, 11 and 18)
and 30 s Wingate tests (day 2) undertaken for
comparison.
Results The treatment group had enhanced mean
cycling power (3.4%), while neopterin and biopterin in
conjunction with total neopterin were significantly
lower (p<0.05) and total biopterin significantly greater
(p<0.05) during the simulated Keirin. Aerobic fitness
measures significantly improved from baseline to
postintervention (VO2peak: 12.8% ", maximal aerobic
power: 18.5% ").
Conclusions Seven consecutive days of IPC
improved aerobic and anaerobic capacity measures,
with modulations in oxidative stress, immune system
activation and nitric oxide/catecholamine synthesis
Sodium-Dependent Vitamin C Transporter 2 (SVCT2) Expression and Activity in Brain Capillary Endothelial Cells after Transient Ischemia in Mice
Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2–5 days. Radioactive uptake assays using 14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Chemical Modifications in Aggregates of Recombinant Human Insulin Induced by Metal-Catalyzed Oxidation: Covalent Cross-Linking via Michael Addition to Tyrosine Oxidation Products
Neopterin, inflammation, and oxidative stress: What could we be missing?
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Neopterin has been extensively used as a clinical marker of immune activation during inflammation in a wide range of conditions and stresses. However, the analysis of neopterin alone neglects the cellular reactions that generate it in response to interferon-γ. Neopterin is the oxidation product of 7,8-dihydroneopterin, which is a potent antioxidant generated by interferon-γ-activated macrophages. 7,8-Dihydroneopterin can protect macrophage cells from a range of oxidants through a scavenging reaction that generates either neopterin or dihydroxanthopterin, depending on the oxidant. Therefore, plasma and urinary neopterin levels are dependent on both macrophage activation to generate 7,8-dihydroneopterin and subsequent oxidation to neopterin. This relationship is clearly shown in studies of exercise and impact-induced injury during intense contact sport. Here, we argue that neopterin and total neopterin, which is the combined value of 7,8-dihydroneopterin and neopterin, could provide a more comprehensive analysis of clinical inflammation than neopterin alone
Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish
Central and peripheral nervous system activity and muscle oxygenation in athletes during repeated-sprint exercise in normoxia and normobaric hypoxia
Aim: To investigate central and peripheral nervous system activity and muscle oxygenation in athletes during repeated-sprint exercise in normoxia and normobaric hypoxia.
Methods: The effects on vastus lateralis muscle strength in a cross-over study were examined in 18 athletes (13 males, 5 females) completing 10 x 6-s cycle sprints. Immediately after and again 5 minutes post-exercise, electromyography (EMG), heart rate variability, maximal voluntary contraction (MVC), muscle oxygenation, peak power output, and arterial oxygen saturation were compared to 2 baseline sets named (“Baseline” and “Pre”).
Results: Post-exercise MVC was significantly lower (6.7 ± 10.0%) than Baseline, but root-mean-square amplitude during hypoxia (all-times) was significantly lower than normoxia (0.38 ± 0.19 vs 0.41 ± 0.17 mV). Comparative frequency analysis of the percentage change in pre- to post-exercise EMG area, at low 1–29 hz (type-1 fibre) and high 75–100 hz (type-2 fibre) areas, revealed a significant reduction in type-1 fibre activity relative to type-2, by 20–30% across time and by 10% in type-1 activity between conditions. Conclusion: Exercise in hypoxia appeared to cause a temporary increase in central sympathetic nervous system activity and greater recruitment of type-2 muscle fibres, with accompanying reduction in type-1. Acute hypoxia may stimulate type-2 fibre conditioning
The physiological response to cold-water immersion following a mixed martial arts training session
Combative sport is one of the most physically intense forms of exercise, yet the effect of recovery interventions has been largely unexplored. We investigated the effect of cold-water immersion on structural, inflammatory, and physiological stress biomarkers following a mixed martial arts (MMA) contest preparation training session in comparison with passive recovery. Semiprofessional MMA competitors (n = 15) were randomly assigned to a cold-water immersion (15 min at 10 °C) or passive recovery protocol (ambient air) completed immediately following a contest preparation training session. Markers of muscle damage (urinary myoglobin), inflammation/oxidative stress (urinary neopterin + total neopterin (neopterin + 7,8-dihydroneopterin)), and hypothalamic–pituitary axis (HPA) activation (saliva cortisol) were determined before, immediately after, and 1, 2, and 24 h postsession. Ratings of perceived soreness and fatigue, counter movement jump, and gastrointestinal temperature were also measured. Concentrations of all biomarkers increased significantly (p < 0.05) postsession. Cold water immersion attenuated increases in urinary neopterin (p < 0.05, d = 0.58), total neopterin (p < 0.05, d = 0.89), and saliva cortisol after 2 h (p < 0.05, d = 0.68) and urinary neopterin again at 24 h (p < 0.01, d = 0.57) in comparison with passive recovery. Perceived soreness, fatigue, and gastrointestinal temperatures were also lower for the cold-water immersion group at several time points postsession whilst counter movement jump did not differ. Combative sport athletes who are subjected to impact-induced stress may benefit from immediate cold-water immersion as a simple recovery intervention that reduces delayed onset muscle soreness as well as macrophage and HPA activation whilst not impairing functional performance.</jats:p
