950 research outputs found
Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of ef within a measurement uncertainty as low as 0.27 ppm
Learning associations between action and perception: effects of incompatible training on body part and spatial priming.
Observation of another person executing an action primes the same action in the observer's motor system. Recent evidence has shown that these priming effects are flexible, where training of new associations, such as making a foot response when viewing a moving hand, can reduce standard action priming effects (Gillmeister, Catmur, Liepelt, Brass, & Heyes, 2008). Previously, these effects were obtained after explicit learning tasks in which the trained action was cued by the content of a visual stimulus. Here we report similar learning processes in an implicit task in which the participant's action is self-selected, and subsequent visual effects are determined by the nature of that action. Importantly, we show that these learning processes are specific to associations between actions and viewed body parts, in that incompatible spatial training did not influence body part or spatial priming effects. Our results are consistent with models of visuomotor learning that place particular emphasis on the repeated experience of watching oneself perform an action
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
A bird's eye view of discard reforms: bird-borne cameras reveal seabird/fishery interactions.
notes: PMCID: PMC3590202types: Journal Article; Research Support, Non-U.S. Gov'tCopyright: © 2013 Votier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Commercial capture fisheries produce huge quantities of offal, as well as undersized and unwanted catch in the form of discards. Declines in global catches and legislation to ban discarding will significantly reduce discards, but this subsidy supports a large scavenger community. Understanding the potential impact of declining discards for scavengers should feature in an eco-system based approach to fisheries management, but requires greater knowledge of scavenger/fishery interactions. Here we use bird-borne cameras, in tandem with GPS loggers, to provide a unique view of seabird/fishery interactions. 20,643 digital images (one min(-1)) from ten bird-borne cameras deployed on central place northern gannets Morus bassanus revealed that all birds photographed fishing vessels. These were large (>15 m) boats, with no small-scale vessels. Virtually all vessels were trawlers, and gannets were almost always accompanied by other scavenging birds. All individuals exhibited an Area-Restricted Search (ARS) during foraging, but only 42% of ARS were associated with fishing vessels, indicating much 'natural' foraging. The proportion of ARS behaviours associated with fishing boats were higher for males (81%) than females (30%), although the reasons for this are currently unclear. Our study illustrates that fisheries form a very important component of the prey-landscape for foraging gannets and that a discard ban, such as that proposed under reforms of the EU Common Fisheries Policy, may have a significant impact on gannet behaviour, particularly males. However, a continued reliance on 'natural' foraging suggests the ability to switch away from scavenging, but only if there is sufficient food to meet their needs in the absence of a discard subsidy.EU INTERREG project CHARM-IIINatural Environment Research CouncilAssociation for the Study of Animal Behaviour research gran
Palynological, geochemical, and mineralogical characteristics of the Early Jurassic Liasidium Event in the Cleveland Basin, Yorkshire, UK
This is the final version. Available on open access from Borntraeger Science Publishers via the DOI in this record.A previously proposed hyperthermal episode in the Early Jurassic (mid-
Sinemurian) is investigated from the shallow marine succession at Robin Hood’s Bay,
Cleveland Basin, Yorkshire, UK. Palynological study confirms that the stratigraphical
extent of the distinctive dinoflagellate cyst Liasidium variabile corresponds very
closely to the oxynotum Zone. The range of Liasidium variabile also corresponds to
an overall negative excursion in carbon-isotopes measured in bulk organic matter,
which here exhibits a double spike in the middle oxynotum Zone. Additionally,
Liasidium variabile abundances track overall transgressive-regressive facies trends
with peak abundance of dinoflagellate cysts corresponding to deepest water facies
and maximum flooding. Lithological cycles (parasequences), defined by visual
description and hand-held X-ray fluorescence analysis of powdered samples, match
previously suggested short eccentricity cycles, and allow a total duration for the
event of at least one million years to be suggested. Changes in clay mineralogy
throughout the section determined by whole rock X-ray diffraction and scanning
electron microscopy are shown to be largely related to authigenic 33 processes, and
neither support nor refute the proposition of coeval palaeoclimate changes. The
combined characteristics of the Liasidium Event described from Robin Hood’s Bay
are similar to, but much less extreme than, the Early Jurassic Toarcian Oceanic
Anoxic Event albeit, at this locality, there is no evidence for the development of
significant bottom water deoxygenation.Natural Environment Research Council (NERC)University of OxfordBritish Geological Survey (BGS)Leopoldina, German National Academy of Science
Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa
© 2016 The Authors. Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS-PA1, RNS-PA46 and RNS-PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and Colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. Gil disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5-aacA4-gcuE15-aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa
AMPK:a nutrient and energy sensor that maintains energy homeostasis
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability
- …
