149 research outputs found

    Development of sentinel node localization and ROLL in breast cancer in Europe

    Get PDF
    The concept of a precise region in which to find the lymph nodes that drain the lymph directly from the primary tumor site can be traced back to a century ago to the observations of Jamieson and Dobson who described how cancer cells spread from cancer of the stomach in a single lymph node, which they called the â\u80\u9cprimary glandâ\u80\u9d. However, Cabanas was the first in 1977 to realize the importance of this concept in clinical studies following lymphography performed in patients with penile cancer. Thanks to Mortonâ\u80\u99s studies on melanoma in 1992, we began to understand the potential impact of the sentinel lymph node (SN) on the surgical treatment of this type of cancer. The use of a vital dye (blue dye) administered subdermally in the region surrounding the melanoma lesion led to the identification of the sentinel node, and the vital dye technique was subsequently applied to other types of solid tumors, e.g. breast, vulva. However, difficulties in using this technique in anatomical regions with deep lymphatic vessels, e.g. axilla, led to the development of lymphoscintigraphy, started by Alex and Krag in 1993 on melanoma and breast cancer and optimized by our group at European Institute of Oncology (IEO) in Milan in 1996. Today, lymphoscintigraphy is still considered as the most reliable method for the detection of the SN. In 1996, a new method for the localization of non-palpable breast lesion called radioguided occult lesion localization (ROLL) was also developed at IEO. Retrospective and prospective studies have since shown that the ROLL procedure permits the easy and accurate surgical removal of non-palpable breast lesions, overcoming the limitations of previous techniques such as the wire-guided localization. The purpose of this paper is to describe the evolution of SN biopsy and radioguided surgery in the management of breast cancer. We also include a review of the literature on the clinical scenarios in which SN biopsy in breast cancer is currently used, with particular reference to controversies and future prospects

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe

    New Pharmacological Agents to Aid Smoking Cessation and Tobacco Harm Reduction: What has been Investigated and What is in the Pipeline?

    Get PDF
    A wide range of support is available to help smokers to quit and aid attempts at harm reduction, including three first-line smoking cessation medications: nicotine replacement therapy, varenicline and bupropion. Despite the efficacy of these, there is a continual need to diversify the range of medications so that the needs of tobacco users are met. This paper compares the first-line smoking cessation medications to: 1) two variants of these existing products: new galenic formulations of varenicline and novel nicotine delivery devices; and 2) twenty-four alternative products: cytisine (novel outside of central and eastern Europe), nortriptyline, other tricyclic antidepressants, electronic cigarettes, clonidine (an anxiolytic), other anxiolytics (e.g. buspirone), selective 5-hydroxytryptamine (5-HT) reuptake inhibitors, supplements (e.g. St John’s wort), silver acetate, nicobrevin, modafinil, venlafaxine, monoamine oxidase inhibitors (MAOI), opioid antagonist, nicotinic acetylcholine receptors (nAChR) antagonists, glucose tablets, selective cannabinoid type 1 receptor antagonists, nicotine vaccines, drugs that affect gamma-aminobutyric acid (GABA) transmission, drugs that affect N-methyl-D-aspartate receptors (NMDA), dopamine agonists (e.g. levodopa), pioglitazone (Actos; OMS405), noradrenaline reuptake inhibitors, and the weight management drug lorcaserin. Six criteria are used: relative efficacy, relative safety, relative cost, relative use (overall impact of effective medication use), relative scope (ability to serve new groups of patients), and relative ease of use (ESCUSE). Many of these products are in the early stages of clinical trials, however, cytisine looks most promising in having established efficacy and safety and being of low cost. Electronic cigarettes have become very popular, appear to be efficacious and are safer than smoking, but issues of continued dependence and possible harms need to be considered

    Enhancement of a modified Mediterranean-style, low glycemic load diet with specific phytochemicals improves cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia in a randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the worldwide dietary pattern becomes more westernized, the metabolic syndrome is reaching epidemic proportions. Lifestyle modifications including diet and exercise are recommended as first-line intervention for treating metabolic syndrome. Previously, we reported that a modified Mediterranean-style, low glycemic load diet with soy protein and phytosterols had a more favorable impact than the American Heart Association Step 1 diet on cardiovascular disease (CVD) risk factors. Subsequently, we screened for phytochemicals with a history of safe use that were capable of increasing insulin sensitivity through modulation of protein kinases, and identified hops <it>rho </it>iso-alpha acid and acacia proanthocyanidins. The objective of this study was to investigate whether enhancement of a modified Mediterranean-style, low glycemic load diet (MED) with specific phytochemicals (soy protein, phytosterols, <it>rho </it>iso-alpha acids and proanthocyanidins; PED) could improve cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia.</p> <p>Methods</p> <p>Forty-nine subjects with metabolic syndrome and hypercholesterolemia, aged 25–80, entered a randomized, 2-arm, 12-week intervention trial; 23 randomized to the MED arm; 26 to the PED arm. Forty-four subjects completed at least 8 weeks [MED (<it>n </it>= 19); PED (<it>n </it>= 25)]. All subjects were instructed to follow the same aerobic exercise program. Three-day diet diaries and 7-day exercise diaries were assessed at each visit. Fasting blood samples were collected at baseline, 8 and 12 weeks for analysis.</p> <p>Results</p> <p>Both arms experienced equal weight loss (MED: -5.7 kg; PED: -5.9 kg). However, at 12 weeks, the PED arm experienced greater reductions (<it>P </it>< 0.05) in cholesterol, non-HDL cholesterol, triglycerides (TG), cholesterol/HDL and TG/HDL compared with the MED arm. Only the PED arm experienced increased HDL (<it>P </it>< 0.05) and decreased TG/HDL (<it>P </it>< 0.01), and continued reduction in apo B/apo A-I from 8 to 12 weeks. Furthermore, 43% of PED subjects vs. only 22% of MED subjects had net resolution of metabolic syndrome. The Framingham 10-year CVD risk score decreased by 5.6% in the PED arm (<it>P </it>< 0.01) and 2.9% in the MED arm (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>These results demonstrate that specific phytochemical supplementation increased the effectiveness of the modified Mediterranean-style low glycemic load dietary program on variables associated with metabolic syndrome and CVD.</p

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome

    A common biological basis of obesity and nicotine addiction

    Get PDF
    Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34 216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10&lt;sup&gt;−7&lt;/sup&gt;). These findings replicate in a second large data set (N=127 274, thereof 76 242 smokers) for both SI (P=1.2 × 10&lt;sup&gt;−5&lt;/sup&gt;) and CPD (P=9.3 × 10&lt;sup&gt;−5&lt;/sup&gt;). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity

    All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs

    Get PDF
    Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate (TDR = 1−FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohn's disease GWAS, where we find a hundredfold variation in replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to 300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the discovery of loci
    corecore