322 research outputs found
Impacts of igneous intrusions on source reservoir potential in prospective sedimentary basins along the western Australian continental margin
The Dawn of Open Access to Phylogenetic Data
The scientific enterprise depends critically on the preservation of and open
access to published data. This basic tenet applies acutely to phylogenies
(estimates of evolutionary relationships among species). Increasingly,
phylogenies are estimated from increasingly large, genome-scale datasets using
increasingly complex statistical methods that require increasing levels of
expertise and computational investment. Moreover, the resulting phylogenetic
data provide an explicit historical perspective that critically informs
research in a vast and growing number of scientific disciplines. One such use
is the study of changes in rates of lineage diversification (speciation -
extinction) through time. As part of a meta-analysis in this area, we sought to
collect phylogenetic data (comprising nucleotide sequence alignment and tree
files) from 217 studies published in 46 journals over a 13-year period. We
document our attempts to procure those data (from online archives and by direct
request to corresponding authors), and report results of analyses (using
Bayesian logistic regression) to assess the impact of various factors on the
success of our efforts. Overall, complete phylogenetic data for ~60% of these
studies are effectively lost to science. Our study indicates that phylogenetic
data are more likely to be deposited in online archives and/or shared upon
request when: (1) the publishing journal has a strong data-sharing policy; (2)
the publishing journal has a higher impact factor, and; (3) the data are
requested from faculty rather than students. Although the situation appears
dire, our analyses suggest that it is far from hopeless: recent initiatives by
the scientific community -- including policy changes by journals and funding
agencies -- are improving the state of affairs
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Candida glabrata : a review of its features and resistance
Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.The authors are grateful to strategic project PTDC/SAU-MIC/119069/2010 for the financial support to the research center and for Celia F. Rodrigues' grant
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Laser Forming of Aerospace Alloys
Non-contact forming by application of a thermal source has been known for some time. Recently, it has been shown that much greater controllability can be introduced by replacing the thermal source with a laser. This yields a process with strong potential for application in aerospace, including the rapid manufacture of prototypes and the adjustment of misaligned components. This paper briefly reviews the mechanisms involved in laser forming and then summarises experimental work carried out on aluminium alloys and titanium alloys that led to the development of a prototype system for the forming of 2-D sheet materials. Emphasis is placed on the process advantages, including the high accuracy (arising from the progressive nature of the process) that can be achieved in forming or adjustment of misalignment. Future work in a new collaborative programme to develop 3-D laser forming is summarised. Copyright © 2001 Society of Automotive Engineers, Inc
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
ProtQuant: a tool for the label-free quantification of MudPIT proteomics data
<p>Abstract</p> <p>Background</p> <p>Effective and economical methods for quantitative analysis of high throughput mass spectrometry data are essential to meet the goals of directly identifying, characterizing, and quantifying proteins from a particular cell state. Multidimensional Protein Identification Technology (MudPIT) is a common approach used in protein identification. Two types of methods are used to detect differential protein expression in MudPIT experiments: those involving stable isotope labelling and the so-called label-free methods. Label-free methods are based on the relationship between protein abundance and sampling statistics such as peptide count, spectral count, probabilistic peptide identification scores, and sum of peptide Sequest XCorr scores (ΣXCorr). Although a number of label-free methods for protein quantification have been described in the literature, there are few publicly available tools that implement these methods. We describe ProtQuant, a Java-based tool for label-free protein quantification that uses the previously published ΣXCorr method for quantification and includes an improved method for handling missing data.</p> <p>Results</p> <p><it>ProtQuant </it>was designed for ease of use and portability for the bench scientist. It implements the ΣXCorr method for label free protein quantification from MudPIT datasets. <it>ProtQuant </it>has a graphical user interface, accepts multiple file formats, is not limited by the size of the input files, and can process any number of replicates and any number of treatments. In addition,<it>ProtQuant </it>implements a new method for dealing with missing values for peptide scores used for quantification. The new algorithm, called ΣXCorr*, uses "below threshold" peptide scores to provide meaningful non-zero values for missing data points. We demonstrate that ΣXCorr* produces an average reduction in false positive identifications of differential expression of 25% compared to ΣXCorr.</p> <p>Conclusion</p> <p><it>ProtQuant </it>is a tool for protein quantification built for multi-platform use with an intuitive user interface. <it>ProtQuant </it>efficiently and uniquely performs label-free quantification of protein datasets produced with Sequest and provides the user with facilities for data management and analysis. Importantly, <it>ProtQuant </it>is available as a self-installing executable for the Windows environment used by many bench scientists.</p
Assaying Total Carotenoids in Flours of Corn and Sweetpotato by Laser Photoacoustic Spectroscopy
This study describes the application of the laser photoacoustic spectroscopy (PAS) for quantification of total carotenoids (TC) in corn flours and sweetpotato flours. Overall, thirty-three different corn flours and nine sweetpotato flours were investigated. All PAS measurements were performed at room temperature using 488-nm argon laser radiation for excitation and mechanical modulation of 9 and 30 Hz. The measurements were repeated within a run and within several days or months. The UV–Vis spectrophotometry was used as the reference method. The concentration range that allows for the reliable analysis of TC spans a region from 1 to 40 mg kg−1 for corn flours and from 9 to 40 mg kg−1 for sweetpotato flours. In the case of sweetpotato flours, the quantification may extend even to 240 mg kg−1 TC. The estimated detection limit values for TC in corn and sweetpotato flours were 0.1 and 0.3 mg kg−1, respectively. The computed repeatability (n = 3–12) and intermediate precision (n = 6–28) RSD values at 9 and 30 Hz are comparable: 0.1–17.1% and 5.3–14.7% for corn flours as compared with 1.4–9.1% and 4.2–23.0% for sweetpotato flours. Our results show that PAS can be successfully used as a new analytical tool to simply and rapidly screen the flours for their nutritional potential based on the total carotenoid concentration
Genes Selectively Up-Regulated by Pheromone in White Cells Are Involved in Biofilm Formation in Candida albicans
To mate, MTL-homozygous strains of the yeast pathogen Candida albicans must switch from the white to opaque phase. Mating-competent opaque cells then release pheromone that induces polarization, a G1 block and conjugation tube formation in opaque cells of opposite mating type. Pheromone also induces mating-incompetent white cells to become adhesive and cohesive, and form thicker biofilms that facilitate mating. The pheromone response pathway of white cells shares the upstream components of that of opaque cells, but targets a different transcription factor. Here we demonstrate that the genes up-regulated by the pheromone in white cells are activated through a common cis-acting sequence, WPRE, which is distinct from the cis-acting sequence, OPRE, responsible for up-regulation in opaque cells. Furthermore, we find that these white-specific genes play roles in white cell biofilm formation, and are essential for biofilm formation in the absence of an added source of pheromone, suggesting either an autocrine or pheromone-independent mechanism. These results suggest an intimate, complex and unique relationship between switching, mating and MTL-homozygous white cell biofilm formation, the latter a presumed virulence factor in C. albicans
- …
