973 research outputs found
Evolution of oligomeric state through allosteric pathways that mimic ligand binding.
Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.This is the accepted manuscript. The final version is available from AAAS at http://www.sciencemag.org/content/346/6216/1254346.abstract
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
X-ray emission from isolated neutron stars
X-ray emission is a common feature of all varieties of isolated neutron stars
(INS) and, thanks to the advent of sensitive instruments with good
spectroscopic, timing, and imaging capabilities, X-ray observations have become
an essential tool in the study of these objects. Non-thermal X-rays from young,
energetic radio pulsars have been detected since the beginning of X-ray
astronomy, and the long-sought thermal emission from cooling neutron star's
surfaces can now be studied in detail in many pulsars spanning different ages,
magnetic fields, and, possibly, surface compositions. In addition, other
different manifestations of INS have been discovered with X-ray observations.
These new classes of high-energy sources, comprising the nearby X-ray Dim
Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the
Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to
several tens of confirmed members, plus many candidates, and allow us to study
a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant
Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from
pulsars and their systems", held in April, 201
A pilot randomised controlled trial investigating a mindfulness-based stress reduction (MBSR) intervention in individuals with pulmonary arterial hypertension (PAH): the PATHWAYS study
Background: Pulmonary arterial hypertension (PAH) is an uncommon condition with progressive heart failure and premature death. Treatment costs up to £120,000 per patient per year, and the psychological burden of PAH is substantial. Mindfulness-based stress reduction (MBSR) is an intervention with the potential to reduce this burden, but to date, it has not been applied to people with pulmonary hypertension. We wished to determine whether a trial of MBSR for people with PAH would be feasible. Methods: A customised gentle MBSR programme of eight sessions was developed for people with physical disability due to PAH, and they were randomised to group-based MBSR or treatment as usual. The completeness of outcome measures including Beck Anxiety Index, Beck Depression Inventory and standard physical assessment at 3 months after randomisation were recorded. Health care utilisation was measured. Attendance at the sessions and the costs involved in delivering the intervention were assessed. Semi-structured interviews were conducted to explore the acceptability of the MBSR intervention and when appropriate the reasons for trial non-participation. Results: Fifty-two patients were recruited, but only 34 were randomised due to patients finding it difficult to travel to sessions. Twenty-two completed all questionnaires and attended all clinics, both routine and additional in order to collect outcomes measures. The MSBR sessions were delivered in Bristol, Cardiff and London, costing, on average, between £2234 (Cardiff) and £4128 (London) per patient to deliver. Attendance at each session averaged between two patients in Bristol and Cardiff and three in London. For those receiving treatment as usual, clinician blinding was achievable. Interviews revealed that people who attended MBSR found it interesting and helpful in managing their symptoms and minimising the psychological component of their disease. Conclusions: We found that attendance at group MBSR was poor in people with chronic PAH within the context of a trial. Achieving better MBSR intervention attendance or use of an Internet-based programme might maximise the benefit of MBSR
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments
Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant
Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk
BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. METHODS: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization
Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles
DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent
scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle.
We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications
Setting a Local Research Agenda for Women's Health: The National Centers of Excellence in Women's Health
Although women's health research expanded greatly in the past 10 years, significant gaps in knowledge remain. Prioritization and promotion of research will help assure continuing progress in closing such gaps and improving the health of women. Although a comprehensive agenda for the new millennium has been developed at the national level, the process for establishing a local research agenda is not well defined. The purpose of this study was to describe criteria for and barriers to establishing a local research agenda in women's health. A secondary aim was to describe mechanisms for identifying women's health researchers and for facilitating multidisciplinary research. Directors of Research at National Centers of Excellence in Women's Health (CoEs) (n = 18) were surveyed by mail for this information. The results indicate that the local research agenda should emphasize health issues that are prevalent in women, research that is likely to establish treatment, psychosocial/cultural factors, and quality of life issues. The process of setting a research agenda should include input from the communities served as well as from scientists. Critical evaluation of scientific strengths and weaknesses is an essential preliminary step in prioritizing research opportunities in order to implement and evaluate a research agenda in women's health.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63225/1/152460901317193512.pd
Pharmacological Investigations of the Dissociative ‘Legal Highs’ Diphenidine, Methoxphenidine and Analogues
1,2-Diarylethylamines including lanicemine, lefetamine, and remacemide have clinical relevance in a range of therapeutic areas including pain management, epilepsy, neurodegenerative disease and depression. More recently 1,2-diarylethylamines have been sold as ‘legal highs’ in a number of different forms including powders and tablets. These compounds are sold to circumvent governmental legislation regulating psychoactive drugs. Examples include the opioid MT-45 and the dissociative agents diphenidine (DPH) and 2-methoxy-diphenidine (2-MXP). A number of fatal and non-fatal overdoses have been linked to abuse of these compounds. As with many ‘legal highs’, little is known about their pharmacology. To obtain a better understanding, the effects of DPH, 2-MXP and its 3- and 4-MeO- isomers, and 2-Cl-diphenidine (2-Cl-DPH) were investigated using binding studies at 46 central nervous system receptors including the N-methyl-D-aspartate receptor (NMDAR), serotonin, dopamine, norepinephrine, histamine, and sigma receptors as well as the reuptake transporters for serotonin, dopamine and norepinephrine. Reuptake inhibition potencies were measured at serotonin, norepinephrine and dopamine transporters. NMDAR antagonism was established in vitro using NMDAR-induced field excitatory postsynaptic potential (fEPSP) experiments. Finally, DPH and 2-MXP were investigated using tests of pre-pulse inhibition of startle (PPI) in rats to determine whether they reduce sensorimotor gating, an effect observed with known dissociative drugs such as phencyclidine (PCP) and ketamine. The results suggest that these 1,2-diarylethylamines are relatively selective NMDAR antagonists with weak off-target inhibitory effects on dopamine and norepinephrine reuptake. DPH and 2-MXP significantly inhibited PPI. DPH showed greater potency than 2-MXP, acting with a median effective dose (ED50) of 9.5 mg/kg, which is less potent than values reported for other commonly abused dissociative drugs such as PCP and ketamine
- …
