1,967 research outputs found

    Neutrino Mass and New Physics

    Full text link
    We review the present state of and future outlook for our understanding of neutrino masses and mixings. We discuss what we think are the most important perspectives on the plausible and natural scenarios for neutrinos and what may have the most promise to throw light on the flavor problem of quarks and leptons. We focus on the seesaw mechanism which fits into the big picture of particle physics such as supersymmetry and grand unification providing a unified approach to flavor problem of quarks and leptons. We argue that in combination with family symmetries, this may be at the heart of a unified understanding of flavor puzzle. We also discuss other new physics ideas such as neutrinos in models with extra dimensions and possible theoretical implications of sterile neutrinos. We outline some tests for the various schemes.Comment: 90 pages and 9 figures; With permission from the Annual Review of Nuclear and Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 56, to be published in November 2006 by Annual Reviews (http://www.annualreviews.org); some references and parts of text update

    LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

    Get PDF
    We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton mass splittings, occur not only in the left- but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br(τ~Rμχ10{\tilde\tau}_R \to \mu \chi^0_1)/Br(τ~Lμχ10{\tilde\tau}_L \to \mu \chi^0_1) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ+e+γ\mu^+ \to e^+ \gamma, A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure

    Dynamical R-parity Breaking at the LHC

    Full text link
    In a class of extensions of the minimal supersymmetric standard model with (B-L)/left-right symmetry that explains the neutrino masses, breaking R-parity symmetry is an essential and dynamical requirement for successful gauge symmetry breaking. Two consequences of these models are: (i) a new kind of R-parity breaking interaction that protects proton stability but adds new contributions to neutrinoless double beta decay and (ii) an upper bound on the extra gauge and parity symmetry breaking scale which is within the large hadron collider (LHC) energy range. We point out that an important prediction of such theories is a potentially large mixing between the right-handed charged lepton (ece^c) and the superpartner of the right-handed gauge boson (W~R+\widetilde W_R^+), which leads to a brand new class of R-parity violating interactions of type μc~νμcec\widetilde{\mu^c}^\dagger\nu_\mu^c e^c and \widetilde{d^c}^\dagger\u^c e^c. We analyze the relevant constraints on the sparticle mass spectrum and the LHC signatures for the case with smuon/stau NLSP and gravitino LSP. We note the "smoking gun" signals for such models to be lepton flavor/number violating processes: ppμ±μ±e+ejjpp\to \mu^\pm\mu^\pm e^+e^-jj (or τ±τ±e+ejj\tau^\pm\tau^\pm e^+e^-jj) and ppμ±e±bbˉjjpp\to\mu^\pm e^\pm b \bar{b} jj (or τ±e±bbˉjj\tau^\pm e^\pm b \bar{b} jj) without significant missing energy. The predicted multi-lepton final states and the flavor structure make the model be distinguishable even in the early running of the LHC.Comment: 30 pages, 13 figures, 6 tables, reference adde

    Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    Get PDF
    Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund

    Wilson Lines and a Canonical Basis of SU(4) Heterotic Standard Models

    Full text link
    The spontaneous breaking of SU(4) heterotic standard models by Z_3 x Z_3 Wilson lines to the MSSM with three right-handed neutrino supermultiplets and gauge group SU(3)_C x SU(2)_L x U(1) x U(1) is explored. The two-dimensional subspace of the Spin(10) Lie algebra that commutes with su(3)_C + su(2)_L is analyzed. It is shown that there is a unique basis for which the initial soft supersymmetry breaking parameters are uncorrelated and for which the U(1) x U(1) field strengths have no kinetic mixing at any scale. If the Wilson lines "turn on" at different scales, there is an intermediate regime with either a left-right or a Pati-Salam type model. We compute their spectra directly from string theory, and adjust the associated mass parameter so that all gauge parameters exactly unify. A detailed analysis of the running gauge couplings and soft gaugino masses is presented.Comment: 59 pages, 9 figure

    Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology

    Get PDF
    We study the colored resonance production at the LHC in a most general approach. We classify the possible colored resonances based on group theory decomposition, and construct their effective interactions with light partons. The production cross section from annihilation of valence quarks or gluons may be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with nominal couplings, leading to the largest production rates for new physics at the TeV scale, and simplest event topology with dijet final states. We apply the new dijet data from the LHC experiments to put bounds on various possible colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The formulation is readily applicable for future searches including other decay modes.Comment: 29 pages, 9 figures. References updated and additional K-factors include

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section

    When Anomaly Mediation is UV Sensitive

    Full text link
    Despite its successes---such as solving the supersymmetric flavor problem---anomaly mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the anomaly mediated supersymmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low energy form of this model is the so-called extended anomaly mediation proposed by Nelson and Weiner, but with potential for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of anomaly mediated supersymmetry breaking deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the μ\mu-τ\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte

    The Higgs as a Probe of Supersymmetric Extra Sectors

    Full text link
    We present a general method for calculating the leading contributions to h -> gg and h -> gamma gamma in models where the Higgs weakly mixes with a nearly supersymmetric extra sector. Such mixing terms can play an important role in raising the Higgs mass relative to the value expected in the MSSM. Our method applies even when the extra sector is strongly coupled, and moreover does not require a microscopic Lagrangian description. Using constraints from holomorphy we fix the leading parametric form of the contributions to these Higgs processes, including the Higgs mixing angle dependence, up to an overall coefficient. Moreover, when the Higgs is the sole source of mass for a superconformal sector, we show that even this coefficient is often calculable. For appropriate mixing angles, the contribution of the extra states to h -> gg and h -> gamma gamma can vanish. We also discuss how current experimental limits already lead to non-trivial constraints on such models. Finally, we provide examples of extra sectors which satisfy the requirements necessary to use the holomorphic approximation.Comment: v4: 34 pages, 2 figures, typo corrected and clarification adde
    corecore