149 research outputs found
Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis
Perspectives of Patients with Insulin-Treated Type 1 and Type 2 Diabetes on Hypoglycemia: Results of the HAT Observational Study in Central and Eastern European Countries
INTRODUCTION: The aim of this study was to determine the level of awareness of hypoglycemia, the level of fear for hypoglycemia, and the response to hypoglycemic events among insulin-treated diabetes patients from Central and Eastern Europe (CEE). The impact of hypoglycemia on the use of healthcare resources and patient productivity was also assessed. METHODS: This was a multicenter, non-interventional, two-part, patient self-reported questionnaire study that comprised both a retrospective cross-sectional evaluation and a prospective observational evaluation. Study participants were insulin-treated adult patients with type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) from CEE. RESULTS: Most patients (85.4% T1DM and 83.6% T2DM) reported normal hypoglycemia awareness. The median hypoglycemia fear score was 5 out of 10 for T1DM and 4 out of 10 for T2DM patients. Patients increased glucose monitoring, consulted a doctor/nurse, and/or reduced the insulin dose in response to hypoglycemia. As a consequence of hypoglycemia, patients took leave from work/studies or arrived late and/or left early. Hospitalization was required for 31 (1.2%) patients with T1DM and 66 (2.1%) patients with T2DM. CONCLUSION: Hypoglycemia impacts patients' personal and social functioning, reduces productivity, and results in additional costs, both direct (related to increased use of healthcare resources) and indirect (related to absenteeism. FUNDING: Novo Nordisk
Autoimmunity in CD73/Ecto-5′-Nucleotidase Deficient Mice Induces Renal Injury
Extracellular adenosine formed by 5′-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73−/−mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73−/−mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8≥0.52 vs. 2.9±0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97±0.78 vs. 2.55±0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161±0.02 vs. 0.224±0.02 ml/min). We observed autoimmune inflammation in CD73−/−mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73−/−mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73−/−mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73−/−mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation
Adora2b Adenosine Receptor Engagement Enhances Regulatory T Cell Abundance during Endotoxin-Induced Pulmonary Inflammation
Anti-inflammatory signals play an essential role in constraining the magnitude of an inflammatory response. Extracellular adenosine is a critical tissue-protective factor, limiting the extent of inflammation. Given the potent anti-inflammatory effects of extracellular adenosine, we sought to investigate how extracellular adenosine regulates T cell activation and differentiation. Adenosine receptor activation by a pan adenosine-receptor agonist enhanced the abundance of murine regulatory T cells (Tregs), a cell type critical in constraining inflammation. Gene expression studies in both naïve CD4 T cells and Tregs revealed that these cells expressed multiple adenosine receptors. Based on recent studies implicating the Adora2b in endogenous anti-inflammatory responses during acute inflammation, we used a pharmacologic approach to specifically activate Adora2b. Indeed, these studies revealed robust enhancement of Treg differentiation in wild-type mice, but not in Adora2b−/− T cells. Finally, when we subjected Adora2b-deficient mice to endotoxin-induced pulmonary inflammation, we found that these mice experienced more severe inflammation, characterized by increased cell recruitment and increased fluid leakage into the airways. Notably, Adora2b-deficient mice failed to induce Tregs after endotoxin-induced inflammation and instead had an enhanced recruitment of pro-inflammatory effector T cells. In total, these data indicate that the Adora2b adenosine receptor serves a potent anti-inflammatory role, functioning at least in part through the enhancement of Tregs, to limit inflammation
The Comet Interceptor Mission
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
The effect of vitamin B12 and folic acid supplementation on routine haematological parameters in older people: an individual participant data meta-analysis.
BACKGROUND/OBJECTIVES: Low vitamin B12 and folate levels in community-dwelling older people are usually corrected with supplements. However, the effect of this supplementation on haematological parameters in older persons is not known. Therefore, we executed a systematic review and individual participant data meta-analysis of randomised placebo-controlled trials (RCTs). SUBJECTS/METHODS: We performed a systematic search in PubMed, EMBASE, Web of Science, Cochrane and CENTRAL for RCTs published between January 1950 and April 2016, where community-dwelling elderly (60+ years) who were treated with vitamin B12 or folic acid or placebo. The presence of anaemia was not required. We analysed the data on haematological parameters with a two-stage IPD meta-analysis. RESULTS: We found 494 full papers covering 14 studies. Data were shared by the authors of four RCTs comparing vitamin B12 with placebo (n = 343) and of three RCTs comparing folic acid with placebo (n = 929). We found no effect of vitamin B12 supplementation on haemoglobin (change 0.00 g/dL, 95% CI: -0.19;0.18), and no effect of folic acid supplementation (change -0.09 g/dL, 95% CI: -0.19;0.01). The effects of supplementation on other haematological parameters were similar. The effects did not differ by sex or by age group. Also, no effect was found in a subgroup of patients with anaemia and a subgroup of patients who were treated >4 weeks. CONCLUSIONS: Evidence on the effects of supplementation of low concentrations of vitamin B12 and folate on haematological parameters in community-dwelling older people is inconclusive. Further research is needed before firm recommendations can be made concerning the supplementation of vitamin B12 and folate
Occurrence and Functions of PACAP in the Placenta
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide with a widespread distribution both in the nervous system and peripheral organs. The peptide is also present in the female gonadal
system, indicating its role in reproductive functions. While a lot of data are known on PACAP-induced effects in oogenesis and in the regulation of gonadotropin secretion at pituitary level, its placental effects are somewhat
neglected in spite of the documented implantation deficit in mice lacking endogenous PACAP. The aim of the present review is to give a brief summary on the occurrence and actions of PACAP and its receptors in the placenta.
Radioimmunoassay (RIA) measurements revealed increased serum PACAP levels during the third trimester and several changes in placental PACAP content in obstetrical pathological conditions, further supporting the function
of PACAP during pregnancy. Both the peptide and its receptors have been shown in different parts of the
placenta and the umbilical cord. PACAP influences blood vessel and smooth muscle contractility of the uteroplacental unit and is involved in regulation of local hormone secretion. The effects of PACAP on trophoblast cells have been mainly studied in vitro. Effects of PACAP on cell survival, angiogenesis
and invasion/proliferation have been described in different trophoblast cell lines. PACAP increases proliferation and decreases invasion in proliferative
extravillous trophoblast cells, but not in primary trophoblast cells, where PACAP decreased the secretion of various angiogenic markers. PACAP pretreatment enhances survival of non-tumorous primary trophoblast cells exposed to oxidative stress, but it does not influence the cell death-inducing effects of methotrexate in proliferative extravillous cytotrophoblast cells. Interestingly, PACAP has pro-apoptotic effect in choriocarcinoma cells suggesting that the effect of PACAP depends on the type of trophoblast cells. These data strongly support that PACAP plays a role in normal and pathological pregnancies and our review provides an overview of currently available experimental data worth to be further investigated to elucidate the exact role of this peptide in the placenta
- …
