308 research outputs found

    The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates

    Full text link
    We study quantum tunneling for the de Sitter radiation in the planar coordinates and global coordinates, which are nonstationary coordinates and describe the expanding geometry. Using the phase-integral approximation for the Hamilton-Jacobi action in the complex plane of time, we obtain the particle-production rate in both coordinates and derive the additional sinusoidal factor depending on the dimensionality of spacetime and the quantum number for spherical harmonics in the global coordinates. This approach resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur

    Entanglement generation outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We examine the Hawking effect by studying the asymptotic entanglement of two mutually independent two-level atoms placed at a fixed radial distance outside a Schwarzschild black hole in the framework of open quantum systems. We treat the two-atom system as an open quantum system in a bath of fluctuating quantized massless scalar fields in vacuum and calculate the concurrence, a measurement of entanglement, of the equilibrium state of the system at large times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find, for all three vacuum cases, that the atoms turn out to be entangled even if they are initially in a separable state as long as the system is not placed right at the even horizon. Remarkably, only in the Unruh vacuum, will the asymptotic entanglement be affected by the backscattering of the thermal radiation off the space-time curvature. The effect of the back scatterings on the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte

    Back reaction, emission spectrum and entropy spectroscopy

    Full text link
    Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the \emph{reformulated} tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek's outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is \emph{not} precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is \emph{independent} of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but \emph{unfortunately} find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Geometric phase outside a Schwarzschild black hole and the Hawking effect

    Full text link
    We study the Hawking effect in terms of the geometric phase acquired by a two-level atom as a result of coupling to vacuum fluctuations outside a Schwarzschild black hole in a gedanken experiment. We treat the atom in interaction with a bath of fluctuating quantized massless scalar fields as an open quantum system, whose dynamics is governed by a master equation obtained by tracing over the field degrees of freedom. The nonunitary effects of this system are examined by analyzing the geometric phase for the Boulware, Unruh and Hartle-Hawking vacua respectively. We find, for all the three cases, that the geometric phase of the atom turns out to be affected by the space-time curvature which backscatters the vacuum field modes. In both the Unruh and Hartle-Hawking vacua, the geometric phase exhibits similar behaviors as if there were thermal radiation at the Hawking temperature from the black hole. So, a measurement of the change of the geometric phase as opposed to that in a flat space-time can in principle reveal the existence of the Hawking radiation.Comment: 14 pages, no figures, a typo in the References corrected, version to appear in JHEP. arXiv admin note: text overlap with arXiv:1109.033

    Conformally rescaled spacetimes and Hawking radiation

    Full text link
    We study various derivations of Hawking radiation in conformally rescaled metrics. We focus on two important properties, the location of the horizon under a conformal transformation and its associated temperature. We find that the production of Hawking radiation cannot be associated in all cases to the trapping horizon because its location is not invariant under a conformal transformation. We also find evidence that the temperature of the Hawking radiation should transform simply under a conformal transformation, being invariant for asymptotic observers in the limit that the conformal transformation factor is unity at their location.Comment: 22 pages, version submitted to journa

    A polymeric nanomedicine diminishes inflammatory events in renal tubular cells

    Get PDF
    The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models. In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-kB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-kB transcriptional activity and chemokine expression, despite failing to inhibit NF-kB-p65 nuclear translocation and NF-kB DNA binding. QM56 prevented JAK2 activation and NF-kB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-12/2 cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by downmodulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.This work was supported by grants from the Instituto de Salud Carlos III (www.isciii.es), FIS: PI07/0020, CP08/1083, PS09/00447 and ISCIII-RETICS REDINREN RD 06/0016; Sociedad Española de Nefrología (www.senefro.org). Álvaro Ucero, Sergio Berzal and Carlos Ocaña supported by Fundacion Conchita Rabago (www.fundacionconchitarabago.net), Alberto Ortiz by the Programa de Intensificación de la Actividad Investigadora in the Sistema Nacional de Salud of the Instituto de Salud Carlos III and the Agencia ‘‘Pedro Lain Entralgo’’ of the Comunidad de Madrid and CIFRA S-BIO 0283/2006 www.madrid.org/lainentralgo) and Adrián Ramos, by FIS (Programa Miguel Servet)

    Performance of swabs, lavage, and diluents to quantify biomarkers of female genital tract soluble mucosal mediators

    Get PDF
    Background: Measurement of immune mediators and antimicrobial activity in female genital tract secretions may provide biomarkers predictive of risk for HIV-1 acquisition and surrogate markers of microbicide safety. However, optimal methods for sample collection do not exist. This study compared collection methods. Methods: Secretions were collected from 48 women (24 with bacterial vaginosis [BV]) using vaginal and endocervical Dacron and flocked swabs. Cervicovaginal lavage (CVL) was collected with 10 mL of Normosol-R (n = 20), saline (n = 14), or water (n = 14). The concentration of gluconate in Normosol-R CVL was determined to estimate the dilution factor. Cytokine and antimicrobial mediators were measured by Luminex or ELISA and corrected for protein content. Endogenous anti-HIV-1 and anti-E. coli activity were measured by TZM-bl assay or E. coli growth. Results: Higher concentrations of protein were recovered by CVL, despite a 10-fold dilution of secretions, as compared to swab eluents. After protein correction, endocervical swabs recovered the highest mediator levels regardless of BV status. Endocervical and vaginal flocked swabs recovered significantly higher levels of anti-HIV-1 and anti-E. coli activity than Dacron swabs (P<0.001). BV had a significant effect on CVL mediator recovery. Normosol-R tended to recover higher levels of most mediators among women with BV, whereas saline or water tended to recover higher levels among women without BV. Saline recovered the highest levels of anti-HIV-1 activity regardless of BV status. Conclusions: Endocervical swabs and CVL collected with saline provide the best recovery of most mediators and would be the optimal sampling method(s) for clinical trials. © 2011 Dezzutti et al

    How Work Impairments and Reduced Work Ability are Associated with Health Care Use in Workers with Musculoskeletal Disorders, Cardiovascular Disorders or Mental Disorders

    Get PDF
    __Abstract__ Purpose the aim of this study was to explore how work impairments and work ability are associated with health care use by workers with musculoskeletal disorders (MSD), cardiovascular disorders (CVD), or mental disorders (MD). Methods in this cross-sectional study, subjects with MSD (n = 2,074), CVD (n = 714), and MD (n = 443) were selected among health care workers in 12 Dutch organizations. Using an online questionnaire, data were collected on in

    Motion correction of free-breathing magnetic resonance renography using model-driven registration

    Get PDF
    Introduction Model-driven registration (MDR) is a general approach to remove patient motion in quantitative imaging. In this study, we investigate whether MDR can effectively correct the motion in free-breathing MR renography (MRR). Materials and methods MDR was generalised to linear tracer-kinetic models and implemented using 2D or 3D free-form deformations (FFD) with multi-resolution and gradient descent optimization. MDR was evaluated using a kidney-mimicking digital reference object (DRO) and free-breathing patient data acquired at high temporal resolution in multi-slice 2D (5 patients) and 3D acquisitions (8 patients). Registration accuracy was assessed using comparison to ground truth DRO, calculating the Hausdorff distance (HD) between ground truth masks with segmentations and visual evaluation of dynamic images, signal-time courses and parametric maps (all data). Results DRO data showed that the bias and precision of parameter maps after MDR are indistinguishable from motion-free data. MDR led to reduction in HD (HDunregistered = 9.98 ± 9.76, HDregistered = 1.63 ± 0.49). Visual inspection showed that MDR effectively removed motion effects in the dynamic data, leading to a clear improvement in anatomical delineation on parametric maps and a reduction in motion-induced oscillations on signal-time courses. Discussion MDR provides effective motion correction of MRR in synthetic and patient data. Future work is needed to compare the performance against other more established methods
    corecore