133 research outputs found

    Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

    Get PDF
    Background: Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6-24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process.Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB.Result: An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated with normal 3T3 cells shows it reduces cell viability in a dose- and time-dependent manner.Conclusions: Sustained release formulation of the nanocomposite, 4-ASA intercalated into zinc layered hydroxides, with its ease of preparation, sustained release of the active and less-toxic to the cell is a step forward for a more patient-friendly chemotherapy of Tuberculosis

    Fatigue In Teenagers on the interNET - The FITNET Trial. A randomized clinical trial of web-based cognitive behavioural therapy for adolescents with chronic fatigue syndrome: study protocol. [ISRCTN59878666]

    Get PDF
    Contains fulltext : 97913.pdf (publisher's version ) (Open Access)BACKGROUND: Chronic Fatigue Syndrome (CFS) is increasingly recognized as a cause of disability and inactivity in adolescents in the Netherlands. CFS is characterized by unexplained fatigue lasting more than 6 months. Cognitive Behavioural Therapy (CBT) has proven to be effective. However, CBT availability for adolescents with CFS is limited and requires special therapeutic skills not always readily available. An alternative to the face-to-face CBT is FITNET, a web-based therapeutic program designed specifically for adolescents diagnosed with CFS, and their parents. This new CBT approach appeals to the modern youth, who grow up with internet as their main source of information. A web-based program offers the opportunity to lower thresholds for the acceptance and realization of healthcare. This treatment can be activated at any chosen time. The communication between patient and therapist can elapse asynchronously. If effective, this web-based program would greatly increase the therapeutic accessibility. METHODS/DESIGN: A randomized clinical trial is currently conducted. One-hundred-forty adolescents aged 12-18 years diagnosed with CFS will be recruited and randomized to one of two groups: FITNET or usual care. After 6 months, the usual care group will have access to the FITNET program. Outcomes will be assessed at baseline, post intervention, and at 6 months follow-up. Primary outcome measures are school presence, fatigue severity, and physical functioning. DISCUSSION: The FITNET study is the first randomized clinical trial which evaluates the effect of web-based CBT versus usual care in adolescents with CFS. The intervention is based on a theoretical existing model of CBT for patients with CFS. The results of this study will provide information about the possibility and efficacy of web-based CBT for adolescents with CFS and will reveal predictors of efficacy. TRIAL REGISTRATION: ISRCTN: ISRCTN59878666 and ClinicalTrials.gov: NCT00893438

    Carotid Body AT4 Receptor Expression and its Upregulation in Chronic Hypoxia

    Get PDF
    Hypoxia regulates the local expression of angiotensin-generating system in the rat carotid body and the me-tabolite angiotensin IV (Ang IV) may be involved in the modulation of carotid body function. We tested the hypothesis that Ang IV-binding angiotensin AT4 receptors play a role in the adaptive change of the carotid body in hypoxia. The expression and localization of Ang IV-binding sites and AT4 receptors in the rat carotid bodies were studied with histochemistry. Specific fluorescein-labeled Ang IV binding sites and positive staining of AT4 immunoreactivity were mainly found in lobules in the carotid body. Double-labeling study showed the AT4 receptor was localized in glomus cells containing tyrosine hydroxylase, suggesting the expression in the chemosensitive cells. Intriguingly, the Ang IV-binding and AT4 immunoreactivity were more intense in the carotid body of chronically hypoxic (CH) rats (breathing 10% oxygen for 4 weeks) than the normoxic (Nx) control. Also, the protein level of AT4 receptor was doubled in the CH comparing with the Nx group, supporting an upregulation of the expression in hypoxia. To examine if Ang IV induces intracellular Ca2+ response in the carotid body, cytosolic calcium ([Ca2+]i) was measured by spectrofluorimetry in fura-2-loaded glomus cells dissociated from CH and Nx carotid bodies. Exogenous Ang IV elevated [Ca2+]i in the glomus cells and the Ang IV response was significantly greater in the CH than the Nx group. Hence, hypoxia induces an upregulation of the expression of AT4 receptors in the glomus cells of the carotid body with an increase in the Ang IV-induced [Ca2+]i elevation. This may be an additional pathway enhancing the Ang II action for the activation of chemoreflex in the hypoxic response during chronic hypoxia

    Protection Induced by Plasmodium falciparum MSP142 Is Strain-Specific, Antigen and Adjuvant Dependent, and Correlates with Antibody Responses

    Get PDF
    Vaccination with Plasmodium falciparum MSP142/complete Freund's adjuvant (FA) followed by MSP142/incomplete FA is the only known regimen that protects Aotus nancymaae monkeys against infection by erythrocytic stage malaria parasites. The role of adjuvant is not defined; however complete FA cannot be used in humans. In rodent models, immunity is strain-specific. We vaccinated Aotus monkeys with the FVO or 3D7 alleles of MSP142 expressed in Escherichia coli or with the FVO allele expressed in baculovirus (bv) combined with complete and incomplete FA, Montanide ISA-720 (ISA-720) or AS02A. Challenge with FVO strain P. falciparum showed that suppression of cumulative day 11 parasitemia was strain-specific and could be induced by E. coli expressed MSP142 in combination with FA or ISA-720 but not with AS02A. The coli42-FVO antigen induced a stronger protective effect than the bv42-FVO antigen, and FA induced a stronger protective effect than ISA-720. ELISA antibody (Ab) responses at day of challenge (DOC) were strain-specific and correlated inversely with c-day 11 parasitemia (r = −0.843). ELISA Ab levels at DOC meeting a titer of at least 115,000 ELISA Ab units identified the vaccinees not requiring treatment (noTx) with a true positive rate of 83.3% and false positive rate of 14.3 %. Correlation between functional growth inhibitory Ab levels (GIA) and cumulative day 11 parasitemia was weaker (r = −0.511), and was not as predictive for a response of noTx. The lowest false positive rate for GIA was 30% when requiring a true positive rate of 83.3%. These inhibition results along with those showing that antigen/FA combinations induced a stronger protective immunity than antigen/ISA-720 or antigen/AS02 combinations are consistent with protection as ascribed to MSP1-specific cytophilic antibodies. Development of an effective MSP142 vaccine against erythrocytic stage P. falciparum infection will depend not only on antigen quality, but also upon the selection of an optimal adjuvant component

    The Ascent of the Abundant: How Mutational Networks Constrain Evolution

    Get PDF
    Evolution by natural selection is fundamentally shaped by the fitness landscapes in which it occurs. Yet fitness landscapes are vast and complex, and thus we know relatively little about the long-range constraints they impose on evolutionary dynamics. Here, we exhaustively survey the structural landscapes of RNA molecules of lengths 12 to 18 nucleotides, and develop a network model to describe the relationship between sequence and structure. We find that phenotype abundance—the number of genotypes producing a particular phenotype—varies in a predictable manner and critically influences evolutionary dynamics. A study of naturally occurring functional RNA molecules using a new structural statistic suggests that these molecules are biased toward abundant phenotypes. This supports an “ascent of the abundant” hypothesis, in which evolution yields abundant phenotypes even when they are not the most fit

    Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis spp</it>. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. <it>Pneumocystis </it>colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to <it>Pneumocystis</it>.</p> <p>Methods</p> <p>To analyze the role of SP-A in protecting the immunocompetent host from <it>Pneumocystis </it>colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to <it>P. murina </it>colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Detection of <it>P. murina </it>specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to <it>P. murina </it>within the animal facility. However, P. <it>murina </it>mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, <it>P. murina </it>cyst forms were also only detected in KO mice. <it>P. murina </it>mRNA was detected in <it>SCID </it>mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared.</p> <p>Conclusion</p> <p>These data support an important role for SP-A in protecting the immunocompetent host from <it>P. murina </it>colonization, and provide a model to study <it>Pneumocystis </it>colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to <it>P. murina </it>even when housed under barrier conditions.</p

    Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    Get PDF
    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results

    Knowledge-Driven Analysis Identifies a Gene–Gene Interaction Affecting High-Density Lipoprotein Cholesterol Levels in Multi-Ethnic Populations

    Get PDF
    Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease. We tested for gene–gene interactions affecting the level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein–protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in their effect on HDL-C levels (Bonferroni corrected Pc = 0.002). Using an adaptive locus-based validation procedure, we successfully validated this gene–gene interaction in the European American cohorts from the Framingham Heart Study (Pc = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; Pc = 0.006). The interaction between these two loci is also significant in the African American sample from ARIC (Pc = 0.004) and in the Hispanic American sample from MESA (Pc = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene–gene interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations

    Novel Association of ABO Histo-Blood Group Antigen with Soluble ICAM-1: Results of a Genome-Wide Association Study of 6,578 Women

    Get PDF
    While circulating levels of soluble Intercellular Adhesion Molecule 1 (sICAM-1) have been associated with diverse conditions including myocardial infarction, stroke, malaria, and diabetes, comprehensive analysis of the common genetic determinants of sICAM-1 is not available. In a genome-wide association study conducted among 6,578 participants in the Women's Genome Health Study, we find that three SNPs at the ICAM1 (19p13.2) locus (rs1799969, rs5498 and rs281437) are non-redundantly associated with plasma sICAM-1 concentrations at a genome-wide significance level (P<5×10−8), thus extending prior results from linkage and candidate gene studies. We also find that a single SNP (rs507666, P = 5.1×10−29) at the ABO (9q34.2) locus is highly correlated with sICAM-1 concentrations. The novel association at the ABO locus provides evidence for a previously unknown regulatory role of histo-blood group antigens in inflammatory adhesion processes

    Dramatic Co-Activation of WWOX/WOX1 with CREB and NF-κB in Delayed Loss of Small Dorsal Root Ganglion Neurons upon Sciatic Nerve Transection in Rats

    Get PDF
    BACKGROUND:Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. METHODOLOGY/PRINCIPAL FINDINGS:Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-kappaB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-kappaB (40-65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-kappaB. WOX1 directly activated NF-kappaB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. CONCLUSIONS/SIGNIFICANCE:Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-kappaB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-kappaB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury
    corecore