50 research outputs found

    Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates

    Get PDF
    Phosphorus (P), in the form of phosphate derived from either inorganic (Pi) or organic (Po) forms is an essential macronutrient for all life. P undergoes a biogeochemical cycle within the environment, but anthropogenic redistribution through inefficient agricultural practice and inadequate nutrient recovery at wastewater treatment works have resulted in a sustained transfer of P from rock deposits to land and aquatic environments. Our present and near future supply of P is primarily mined from rock P reserves in a limited number of geographical regions. To help ensure that this resource is adequate for humanity’s food security, an energy-efficient means of recovering P from waste and recycling it for agriculture is required. This will also help to address excess discharge to water bodies and the resulting eutrophication. Microalgae possess the advantage of polymeric inorganic polyphosphate (PolyP) storage which can potentially operate simultaneously with remediation of waste nitrogen and phosphorus streams and flue gases (CO2, SOx, and NOx). Having high productivity in photoautotrophic, mixotrophic or heterotrophic growth modes, they can be harnessed in wastewater remediation strategies for biofuel production either directly (biodiesel) or in conjunction with anaerobic digestion (biogas) or dark fermentation (biohydrogen). Regulation of algal P uptake, storage, and mobilization is intertwined with the cellular status of other macronutrients (e.g., nitrogen and sulphur) in addition to the manufacture of other storage products (e.g., carbohydrate and lipids) or macromolecules (e.g., cell wall). A greater understanding of controlling factors in this complex interaction is required to facilitate and improve P control, recovery, and reuse from waste streams. The best understood algal genetic model is Chlamydomonas reinhardtii in terms of utility and shared resources. It also displays mixotrophic growth and advantageously, species of this genus are often found growing in wastewater treatment plants. In this review, we focus primarily on the molecular and genetic aspects of PolyP production or turnover and place this knowledge in the context of wastewater remediation and highlight developments and challenges in this field

    Female Chimpanzees Use Copulation Calls Flexibly to Prevent Social Competition

    Get PDF
    The adaptive function of copulation calls in female primates has been debated for years. One influential idea is that copulation calls are a sexually selected trait, which enables females to advertise their receptive state to males. Male-male competition ensues and females benefit by getting better mating partners and higher quality offspring. We analysed the copulation calling behaviour of wild female chimpanzees (Pan troglodytes schweinfurthii) at Budongo Forest, Uganda, but found no support for the male-male competition hypothesis. Hormone analysis showed that the calling behaviour of copulating females was unrelated to their fertile period and likelihood of conception. Instead, females called significantly more while with high-ranking males, but suppressed their calls if high-ranking females were nearby. Copulation calling may therefore be one potential strategy employed by female chimpanzees to advertise receptivity to high-ranked males, confuse paternity and secure future support from these socially important individuals. Competition between females can be dangerously high in wild chimpanzees, and our results indicate that females use their copulation calls strategically to minimise the risks associated with such competition

    A large-scale study across the avian clade identifies ecological drivers of neophobia

    Get PDF
    Copyright: \ua9 2025 Miller et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Neophobia, or aversion to novelty, is important for adaptability and survival as it influences the ways in which animals navigate risk and interact with their environments. Across individuals, species and other taxonomic levels, neophobia is known to vary considerably, but our understanding of the wider ecological drivers of neophobia is hampered by a lack of comparative multispecies studies using standardized methods. Here, we utilized the ManyBirds Project, a Big Team Science large-scale collaborative open science framework, to pool efforts and resources of 129 collaborators at 77 institutions from 24 countries worldwide across six continents. We examined both difference scores (between novel object test and control conditions) and raw data of latency to touch familiar food in the presence (test) and absence (control) of a novel object among 1,439 subjects from 136 bird species across 25 taxonomic orders incorporating lab, field, and zoo sites. We first demonstrated that consistent differences in neophobia existed among individuals, among species, and among other taxonomic levels in our dataset, rejecting the null hypothesis that neophobia is highly plastic at all taxonomic levels with no evidence for evolutionary divergence. We then tested for effects of ecological factors on neophobia, including diet, sociality, habitat, and range, while accounting for phylogeny. We found that (i) species with more specialist diets were more neophobic than those with more generalist diets, providing support for the Neophobia Threshold Hypothesis; (ii) migratory species were also more neophobic than nonmigratory species, which supports the Dangerous Niche Hypothesis. Our study shows that the evolution of avian neophobia has been shaped by ecological drivers and demonstrates the potential of Big Team Science to advance our understanding of animal behavior

    A large-scale study across the avian clade identifies ecological drivers of neophobia

    Get PDF
    Neophobia, or aversion to novelty, is important for adaptability and survival as it influences the ways in which animals navigate risk and interact with their environments. Across individuals, species and other taxonomic levels, neophobia is known to vary considerably, but our understanding of the wider ecological drivers of neophobia is hampered by a lack of comparative multispecies studies using standardized methods. Here, we utilized the ManyBirds Project, a Big Team Science large-scale collaborative open science framework, to pool efforts and resources of 129 collaborators at 77 institutions from 24 countries worldwide across six continents. We examined both difference scores (between novel object test and control conditions) and raw data of latency to touch familiar food in the presence (test) and absence (control) of a novel object among 1,439 subjects from 136 bird species across 25 taxonomic orders incorporating lab, field, and zoo sites. We first demonstrated that consistent differences in neophobia existed among individuals, among species, and among other taxonomic levels in our dataset, rejecting the null hypothesis that neophobia is highly plastic at all taxonomic levels with no evidence for evolutionary divergence. We then tested for effects of ecological factors on neophobia, including diet, sociality, habitat, and range, while accounting for phylogeny. We found that (i) species with more specialist diets were more neophobic than those with more generalist diets, providing support for the Neophobia Threshold Hypothesis; (ii) migratory species were also more neophobic than nonmigratory species, which supports the Dangerous Niche Hypothesis. Our study shows that the evolution of avian neophobia has been shaped by ecological drivers and demonstrates the potential of Big Team Science to advance our understanding of animal behavior

    Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    No full text
    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo
    corecore