11 research outputs found
Beyond a phenomenological description of magnetostriction
We use ultrafast x-ray and electron diffraction to disentangle spin-lattice
coupling of granular FePt in the time domain. The reduced dimensionality of
single-crystalline FePt nanoparticles leads to strong coupling of magnetic
order and a highly anisotropic three-dimensional lattice motion characterized
by a- and b-axis expansion and c-axis contraction. The resulting increase of
the FePt lattice tetragonality, the key quantity determining the energy barrier
between opposite FePt magnetization orientations, persists for tens of
picoseconds. These results suggest a novel approach to laser-assisted magnetic
switching in future data storage applications.Comment: 12 pages, 4 figure
Recommended from our members
A direct electron detector for time-resolved MeV electron microscopy.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed
A direct electron detector for time-resolved MeV electron microscopy.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed
A compact tunable quadrupole lens for brighter and sharper ultra-fast electron diffraction imaging
Monitoring the Evolution of Relative Product Populations at Early Times during a Photochemical Reaction
Ultrafast non-radiative dynamics of atomically thin MoSe2
Photo-induced non-radiative energy dissipation is a potential pathway to induce structural-phase transitions in two-dimensional materials. For advancing this field, a quantitative understanding of real-time atomic motion and lattice temperature is required. However, this understanding has been incomplete due to a lack of suitable experimental techniques. Here, we use ultrafast electron diffraction to directly probe the subpicosecond conversion of photoenergy to lattice vibrations in a model bilayered semiconductor, molybdenum diselenide. We find that when creating a high charge carrier density, the energy is efficiently transferred to the lattice within one picosecond. First-principles nonadiabatic quantum molecular dynamics simulations reproduce the observed ultrafast increase in lattice temperature and the corresponding conversion of photoenergy to lattice vibrations. Nonadiabatic quantum simulations further suggest that a softening of vibrational modes in the excited state is involved in efficient and rapid energy transfer between the electronic system and the lattice
Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy
We introduce a framework for the preparation, coherent manipulation and
characterization of free-electron quantum states, experimentally demonstrating
attosecond pulse trains for electron microscopy. Specifically, we employ
phase-locked single-color and two-color optical fields to coherently control
the electron wave function along the beam direction. We establish a new variant
of quantum state tomography - "SQUIRRELS" - to reconstruct the density matrices
of free-electron ensembles and their attosecond temporal structure. The ability
to tailor and quantitatively map electron quantum states will promote the
nanoscale study of electron-matter entanglement and the development of new
forms of ultrafast electron microscopy and spectroscopy down to the attosecond
regime
