4,183 research outputs found

    Some Statistical Problems with High Dimensional Financial data

    Full text link
    For high dimensional data, some of the standard statistical techniques do not work well. So modification or further development of statistical methods are necessary. In this paper, we explore these modifications. We start with the important problem of estimating high dimensional covariance matrix. Then we explore some of the important statistical techniques such as high dimensional regression, principal component analysis, multiple testing problems and classification. We describe some of the fast algorithms that can be readily applied in practice.Comment: 22 pages, 5 figure

    Experimental observation of nonlinear Thomson scattering

    Get PDF
    A century ago, J. J. Thomson showed that the scattering of low-intensity light by electrons was a linear process (i.e., the scattered light frequency was identical to that of the incident light) and that light's magnetic field played no role. Today, with the recent invention of ultra-high-peak-power lasers it is now possible to create a sufficient photon density to study Thomson scattering in the relativistic regime. With increasing light intensity, electrons quiver during the scattering process with increasing velocity, approaching the speed of light when the laser intensity approaches 10^18 W/cm^2. In this limit, the effect of light's magnetic field on electron motion should become comparable to that of its electric field, and the electron mass should increase because of the relativistic correction. Consequently, electrons in such high fields are predicted to quiver nonlinearly, moving in figure-eight patterns, rather than in straight lines, and thus to radiate photons at harmonics of the frequency of the incident laser light, with each harmonic having its own unique angular distribution. In this letter, we report the first ever direct experimental confirmation of these predictions, a topic that has previously been referred to as nonlinear Thomson scattering. Extension of these results to coherent relativistic harmonic generation may eventually lead to novel table-top x-ray sources.Comment: including 4 figure

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Stimulation of Na<sup>+</sup>/H<sup>+</sup> Exchanger Isoform 1 Promotes Microglial Migration

    Get PDF
    Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. © 2013 Shi et al

    Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets

    Get PDF
    Targeted therapy based on adjustment of microRNA (miRNA)s activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC) remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05). In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT) and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets. © 2015 Zheng et al.published_or_final_versio

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
    corecore