9,167 research outputs found
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Efficient CNN designs like ResNets and DenseNet were proposed to improve
accuracy vs efficiency trade-offs. They essentially increased the connectivity,
allowing efficient information flow across layers. Inspired by these
techniques, we propose to model connections between filters of a CNN using
graphs which are simultaneously sparse and well connected. Sparsity results in
efficiency while well connectedness can preserve the expressive power of the
CNNs. We use a well-studied class of graphs from theoretical computer science
that satisfies these properties known as Expander graphs. Expander graphs are
used to model connections between filters in CNNs to design networks called
X-Nets. We present two guarantees on the connectivity of X-Nets: Each node
influences every node in a layer in logarithmic steps, and the number of paths
between two sets of nodes is proportional to the product of their sizes. We
also propose efficient training and inference algorithms, making it possible to
train deeper and wider X-Nets effectively.
Expander based models give a 4% improvement in accuracy on MobileNet over
grouped convolutions, a popular technique, which has the same sparsity but
worse connectivity. X-Nets give better performance trade-offs than the original
ResNet and DenseNet-BC architectures. We achieve model sizes comparable to
state-of-the-art pruning techniques using our simple architecture design,
without any pruning. We hope that this work motivates other approaches to
utilize results from graph theory to develop efficient network architectures.Comment: ECCV'1
A unified 'bang-bang' principle with respect to R-invariant performance benchmarks
published_or_final_versio
Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory
Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los
Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester
The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae
Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics
The simulation of low-temperature properties of many-body systems remains one
of the major challenges in theoretical and experimental quantum information
science. We present, and demonstrate experimentally, a universal cooling method
which is applicable to any physical system that can be simulated by a quantum
computer. This method allows us to distill and eliminate hot components of
quantum states, i.e., a quantum Maxwell's demon. The experimental
implementation is realized with a quantum-optical network, and the results are
in full agreement with theoretical predictions (with fidelity higher than
0.978). These results open a new path for simulating low-temperature properties
of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material
Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases
The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours
Emergence of scale-free leadership structure in social recommender systems
The study of the organization of social networks is important for
understanding of opinion formation, rumor spreading, and the emergence of
trends and fashion. This paper reports empirical analysis of networks extracted
from four leading sites with social functionality (Delicious, Flickr, Twitter
and YouTube) and shows that they all display a scale-free leadership structure.
To reproduce this feature, we propose an adaptive network model driven by
social recommending. Artificial agent-based simulations of this model highlight
a "good get richer" mechanism where users with broad interests and good
judgments are likely to become popular leaders for the others. Simulations also
indicate that the studied social recommendation mechanism can gradually improve
the user experience by adapting to tastes of its users. Finally we outline
implications for real online resource-sharing systems
Entanglement generation outside a Schwarzschild black hole and the Hawking effect
We examine the Hawking effect by studying the asymptotic entanglement of two
mutually independent two-level atoms placed at a fixed radial distance outside
a Schwarzschild black hole in the framework of open quantum systems. We treat
the two-atom system as an open quantum system in a bath of fluctuating
quantized massless scalar fields in vacuum and calculate the concurrence, a
measurement of entanglement, of the equilibrium state of the system at large
times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find,
for all three vacuum cases, that the atoms turn out to be entangled even if
they are initially in a separable state as long as the system is not placed
right at the even horizon. Remarkably, only in the Unruh vacuum, will the
asymptotic entanglement be affected by the backscattering of the thermal
radiation off the space-time curvature. The effect of the back scatterings on
the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte
Tellurium quantum dots: Preparation and optical properties
Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics
The complete mitochondrial genome of Leiocassis crassilabris (Teleostei, Siluriformes: Bagridae)
The Leiocassis crassilabris is an important economic fish in China, and is widely distributed in south China, e.g. Yangtze River, Pearl River, and Min River, so it is a good model to study population genetics and geological changes of these regions. In this study, the complete mitochondrial genome sequence of L. crassilabris has been obtained with PCR. The gene arrangement and composition L. crassilabris of mitochondrial genome sequence are similar to most of the other vertebrates', which contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region with the total length of 16,530 bp. Except for eight tRNA and ND6 genes, other genes are encoded on heavy-strand (H-strand). Similar to most other vertebrates, the bias of G and C have universality in different region (genes). The complete mitochondrial genome sequence of L. crassilabris would contribute to better understand population genetics, conservation, biogeography, evolution of this lineage.The Leiocassis crassilabris is an important economic fish in China, and is widely distributed in south China, e.g. Yangtze River, Pearl River, and Min River, so it is a good model to study population genetics and geological changes of these regions. In this study, the complete mitochondrial genome sequence of L. crassilabris has been obtained with PCR. The gene arrangement and composition L. crassilabris of mitochondrial genome sequence are similar to most of the other vertebrates', which contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region with the total length of 16,530 bp. Except for eight tRNA and ND6 genes, other genes are encoded on heavy-strand (H-strand). Similar to most other vertebrates, the bias of G and C have universality in different region (genes). The complete mitochondrial genome sequence of L. crassilabris would contribute to better understand population genetics, conservation, biogeography, evolution of this lineage
- …
