78 research outputs found

    Dynamics of Dynamics within a Single Data Acquisition Session: Variation in Neocortical Alpha Oscillations in Human MEG

    Get PDF
    Background Behavioral paradigms applied during human recordings in electro- and magneto- encephalography (EEG and MEG) typically require 1–2 hours of data collection. Over this time scale, the natural fluctuations in brain state or rapid learning effects could impact measured signals, but are seldom analyzed. Methods and Findings We investigated within-session dynamics of neocortical alpha (7–14 Hz) rhythms and their allocation with cued-attention using MEG recorded from primary somatosensory neocortex (SI) in humans. We found that there were significant and systematic changes across a single ~1 hour recording session in several dimensions, including increased alpha power, increased differentiation in attention-induced alpha allocation, increased distinction in immediate time-locked post-cue evoked responses in SI to different visual cues, and enhanced power in the immediate cue-locked alpha band frequency response. Further, comparison of two commonly used baseline methods showed that conclusions on the evolution of alpha dynamics across a session were dependent on the normalization method used. Conclusions These findings are important not only as they relate to studies of oscillations in SI, they also provide a robust example of the type of dynamic changes in brain measures within a single session that are overlooked in most human brain imaging/recording studies.National Institutes of Health (U.S.) (P41RR14075)National Institutes of Health (U.S.) (K25MH072941)National Institutes of Health (U.S.) (K01AT003459)National Institutes of Health (U.S.) (1RO1-NS045130-01)National Institutes of Health (U.S.) (T32GM007484)National Science Foundation (U.S.) (0316933)Osher Lifelong Learning Institute

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen

    Emergency department crowding in The Netherlands: managers’ experiences

    Get PDF
    __Abstract__ __Background__ In The Netherlands, the state of emergency department (ED) crowding is unknown. Anecdotal evidence suggests that current ED patients experience a longer length of stay (LOS) compared to some years ago, which is indicative of ED crowding. However, no multicenter studies have been performed to quantify LOS and assess crowding at Dutch EDs. We performed this study to describe the current state of emergency departments in The Netherlands regarding patients’ length of stay and ED nurse managers’ experiences of crowding. __Methods__ A survey was sent to all 94 ED nurse managers in The Netherlands with questions regarding the type of facility, annual ED census, and patients’ LOS. Additional questions included whether crowding was ever a problem at the particular ED, how often it occurred, which time periods had the worst episodes of crowding, and what measures the particular ED had undertaken to improve patient flow. __Results__ Surveys were collected from 63 EDs (67%). Mean annual ED visits were 24,936 (SD ± 9,840); mean LOS for discharged patients was 119 (SD ± 40) min and mean LOS for admitted patients 146 (SD ± 49) min. Consultation delays, laboratory and radiology delays, and hospital bed shortages for patients needing admission were the most cited reasons for crowding. Admitted patients had a longer LOS because of delays in obtaining inpatient beds. Thirty-nine of 57 respondents (68%) reported that crowding occurred several times a week or even daily, mostly between 12:00 and 20:00. Measures taken by hospitals to manage crowding included placing patients in hallways and using a fasttrack with treatment of patients by trained nurse practitioners. __Conclusions__ Despite a relatively short LOS, frequent crowding appears to be a nationwide problem according to Dutch ED nurse managers, with 68% of them reporting that crowding occurred several times a week or even daily. Consultations delays, laboratory and radiology delays, and hospital bed shortage for patients needing admission were believed to be the most important factors contributing to ED crowding

    Proteins on the catwalk: modelling the structural domains of the CCN family of proteins

    Get PDF
    The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach

    Following the genes: a framework for animal modeling of psychiatric disorders

    Get PDF
    The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans

    Gammaherpesvirus-Induced Lung Pathology Is Altered in the Absence of Macrophages

    Full text link
    The purpose of this study was to examine the lung pathogenesis of murine gammaherpesvirus (MHV-68) infection in mice that lack CC chemokine receptor CCR2, an important receptor for macrophage recruitment to sites of inflammation. BALB/c and CCR2 −/− mice were inoculated intranasally (i.n.) with MHV-68 and samples were collected during acute infection (6 dpi) and following viral clearance (12 dpi). Immunohistochemistry was used to determine which cells types responded to MHV-68 infection in the lungs. Lung pathology in infected BALB/c mice was characterized by a mixed inflammatory cell infiltrate, necrosis, and increased alveolar macrophages by 12 dpi. Immunohistochemistry showed intense positive staining for macrophages. CCR2 −/− mice showed greater inflammation in the lungs at 12 dpi than did BALB/c mice, with more necrosis and diffuse neutrophil infiltrates in the alveoli. Immunohistochemistry demonstrated much less macrophage infiltration in the CCR2 −/− mice than in the BALB/c mice. These studies show that CCR2 is involved in macrophage recruitment in response to MHV-68 infection and illustrates how impairments in macrophage function affect the normal inflammatory response to this viral infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41345/1/408_2004_Article_2535.pd

    A new method to infer higher-order spike correlations from membrane potentials

    Get PDF
    What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1–2):327–350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials

    Progressive loss of CD8(+) T cell-mediated control of a gamma-herpesvirus in the absence of CD4(+) T cells

    No full text
    A unique experimental model has been developed for dissecting the integrity of CD8+ T cell-mediated immunity to a persistent gammaherpesvirus under conditions of CD4+ T cell deficiency. Respiratory challenge of major histocompatibility complex class II -/- and +/+ C57BL/6J mice with the murine gammaherpesvirus 68 (MHV-68) leads to productive infection of both lung and adrenal epithelial cells. Virus titers peak within 5-10 d, and are no longer detected after day 15. Persistent, latent infection is established concurrently in splenic and lymph node B cells, with higher numbers of MHV-68+ lymphocytes being found in all lymphoid sites analyzed from the +/+ mice concurrent with the massive, but transient splenomegaly that occurred only in this group. From day 17, however, the numbers of infected B lymphocytes were consistently higher in the -/- group, while the frequency of this population diminished progressively in the +/+ controls. Infectious MHV-68 was again detected in the respiratory tract and the adrenals of the -/- (but not the +/+) mice from day 22 after infection. The titers in these sites rose progressively, with the majority of the -/- mice dying between days 120 and 133. Even so, some CD8+ effectors were still functioning as late as 100 d after infection. Depletion of CD8+ T cells at this stage led to higher virus titers in the -/- lung, and to the development of wasting in some of the -/- mice. Elimination of the CD8+ T cells from the +/+ group (day 80) increased the numbers of MHV-68+ cells in the spleen, but did not reactivate the infection in the respiratory tract. The results are consistent with the interpretation that CD8+ T cell-mediated control of this persistent gammaherpesvirus is progressively lost in the absence of the CD4+ T cell subset. This parallels what may be happening in AIDS patients who develop Kaposi's sarcoma and various Epstein Barr virus associated disease processes
    corecore