335 research outputs found

    Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt

    Get PDF
    We present a conceptual synthesis of the impact that agricultural activity in India can have on land-atmosphere interactions through irrigation. We illustrate a “bottom up” approach to evaluate the effects of land use change on both physical processes and human vulnerability. We compared vapor fluxes (estimated evaporation and transpiration) from a pre-agricultural and a contemporary land cover and found that mean annual vapor fluxes have increased by 17% (340 km3) with a 7% increase (117 km3) in the wet season and a 55% increase (223 km3) in the dry season. Two thirds of this increase was attributed to irrigation, with groundwater-based irrigation contributing 14% and 35% of the vapor fluxes in the wet and dry seasons, respectively. The area averaged change in latent heat flux across India was estimated to be 9 Wm−2. The largest increases occurred where both cropland and irrigated lands were the predominant contemporary land uses

    Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries

    Full text link
    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G_max = U(1)_(B-L) x U(1)_(L_e-L_mu) x U(1)_(L_mu-L_tau). While simple U(1) subgroups of G_max have already been discussed in the context of approximate flavor symmetries, we show how two-zero textures in the right-handed neutrino Majorana mass matrix can be enforced by the flavor symmetry, which is spontaneously broken very economically by singlet scalars. These zeros lead to two vanishing minors in the low-energy neutrino mass matrix after the seesaw mechanism. This study may provide a new testing ground for a zero-texture approach: the different classes of two-zero textures with almost identical neutrino oscillation phenomenology can in principle be distinguished by their different Z' interactions at colliders.Comment: 12 pages; Extended and clarified discussion; comments on finetuning in the textures; matches published versio

    Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw

    Full text link
    We study the possibility of a light Dark Matter (DM) within a constrained Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM singlet-pair sector to account for the non-zero neutrino masses by inverse seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed at high scale and the singlet neutrino sector at low scale, we find that, contrary to the case of the usual cMSSM where the neutralino DM cannot be very light, we can have a light sneutrino DM with mass below 100 GeV satisfying all the current experimental constraints from cosmology, collider as well as low-energy experiments. We also note that the supersymmetric inverse seesaw mechanism with sneutrino as the lightest supersymmetric partner can have enhanced same-sign dilepton final states with large missing transverse energy (mET) coming from the gluino- and squark-pair as well as the squark-gluino associated productions and their cascade decay through charginos. We present a collider study for the same-sign dilepton+jets+mET signal in this scenario and propose some distinctions with the usual cMSSM. We also comment on the implications of such a light DM scenario on the invisible decay width of an 125 GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio

    Influence of Land Cover and Soil Moisture based Brown Ocean Effect on an Extreme Rainfall Event from a Louisiana Gulf Coast Tropical System

    Get PDF
    Extreme flooding over southern Louisiana in mid-August of 2016 resulted from an unusual tropical low that formed and intensified over land. We used numerical experiments to highlight the role of the ‘Brown Ocean’ effect (where saturated soils function similar to a warm ocean surface) on intensification and it’s modulation by land cover change. A numerical modeling experiment that successfully captured the flood event (control) was modified to alter moisture availability by converting wetlands to open water, wet croplands, and dry croplands. Storm evolution in the control experiment with wet antecedent soils most resembles tropical lows that form and intensify over oceans. Irrespective of soil moisture conditions, conversion of wetlands to croplands reduced storm intensity, and also, nonsaturated soils reduced rain by 20% and caused shorter durations of high intensity wind conditions. Developing agricultural croplands and more so restoring wetlands and not converting them into open water can impede intensification of tropical systems that affect the area

    Unresolved issues with the assessment of multidecadal global land surface temperature trends

    Get PDF
    This paper documents various unresolved issues in using surface temperature trends as a metric for assessing global and regional climate change. A series of examples ranging from errors caused by temperature measurements at a monitoring station to the undocumented biases in the regionally and globally averaged time series are provided. The issues are poorly understood or documented and relate to micrometeorological impacts due to warm bias in nighttime minimum temperatures, poor siting of the instrumentation, effect of winds as well as surface atmospheric water vapor content on temperature trends, the quantification of uncertainties in the homogenization of surface temperature data, and the influence of land use/land cover (LULC) change on surface temperature trends. Because of the issues presented in this paper related to the analysis of multidecadal surface temperature we recommend that greater, more complete documentation and quantification of these issues be required for all observation stations that are intended to be used in such assessments. This is necessary for confidence in the actual observations of surface temperature variability and long-term trends

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    What orthopaedic surgery residents need to know about the hand and wrist?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To develop a Core Curriculum for Orthopaedic Surgery; and to conduct a national survey to assess the importance of curriculum items as judged by orthopaedic surgeons with primary affiliation non-academic. Attention for this manuscript was focused on determining the importance of topics pertaining to adult hand and wrist reconstruction.</p> <p>Methods</p> <p>A 281-item questionnaire was developed and consisted of three sections: 1) Validated Musculoskeletal Core Curriculum; 2) Royal College of Physician and Surgeons of Canada (RCPSC) Specialty Objectives and; 3) A procedure list. A random group of 131 [out of 156] orthopaedic surgeons completed the questionnaire. Data were analyzed descriptively and quantitatively using histograms, a Modified Hotel ling's T<sup>2</sup>-statistic <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> with p-value determined by a permutation test, and the Benjamini-Hochberg/Yekutieli procedure</p> <p>Results</p> <p>131/156 (84%) orthopaedic surgeons participated in this study. 27/32 items received an average mean score of at least 3.0/4.0 by all respondents thus suggesting that 84% of the items are either "probably important" or "important" to know by the end of residency (SD range 0.007–0.228). The Benjamini-Hochberg procedure demonstrated that for 80% of the 32 × 31/2 = 496 possible pairs of hand and wrist questions did not appear to demonstrate the same distribution of ratings given that one question was different from that of another question.</p> <p>Conclusion</p> <p>This study demonstrates with reliable statistical evidence, agreement on the importance of 27/32 items pertaining to hand and wrist reconstruction is included in a Core Curriculum for Orthopaedic Surgery. Residency training programs need ensure that educational opportunities focusing on the ability to perform with proficiency procedures pertaining to the hand and wrist is taught and evaluated in their respective programs.</p

    Documentation of Uncertainties and Biases Associated with Surface Temperature Measurement Sites for Climate Change Assessment

    Get PDF
    © Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (https://www.ametsoc.org/) or from the AMS at 617-227-2425 or [email protected] objective of this research is to determine whether poorly sited long-term surface temperature monitoring sites have been adjusted in order to provide spatially representative independent data for use in regional and global surface temperature analyses. We present detailed analyses that demonstrate the lack of independence of the poorly sited data when they are adjusted using the homogenization procedures employed in past studies, as well as discuss the uncertainties associated with undocumented station moves. We use simulation and mathematics to determine the effect of trend on station adjustments and the associated effect of trend in the reference series on the trend of the adjusted station. We also compare data before and after adjustment to the reanalysis data, and we discuss the effect of land use changes on the uncertainty of measurement. A major conclusion of our analysis is that there are large uncertainties associated with the surface temperature trends from the poorly sited stations. Moreover, rather than providing additional independent information, the use of the data from poorly sited stations provides a false sense of confidence in the robustness of the surface temperature trend assessments.Department of Energy National Science Foundation National Aeronautics and Space Administration United States Geological Survey Mary K. Rice Foundatio

    A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope

    Get PDF
    We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density θc. We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves

    Cornelia-de Lange syndrome-associated mutations cause a DNA damage signalling and repair defect

    Get PDF
    Cornelia de Lange syndrome is a multisystem developmental disorder typically caused by mutations in the gene encoding the cohesin loader NIPBL. The associated phenotype is generally assumed to be the consequence of aberrant transcriptional regulation. Recently, we identified a missense mutation in BRD4 associated with a Cornelia de Lange-like syndrome that reduces BRD4 binding to acetylated histones. Here we show that, although this mutation reduces BRD4-occupancy at enhancers it does not affect transcription of the pluripotency network in mouse embryonic stem cells. Rather, it delays the cell cycle, increases DNA damage signalling, and perturbs regulation of DNA repair in mutant cells. This uncovers a role for BRD4 in DNA repair pathway choice. Furthermore, we find evidence of a similar increase in DNA damage signalling in cells derived from NIPBL-deficient individuals, suggesting that defective DNA damage signalling and repair is also a feature of typical Cornelia de Lange syndrome
    corecore