2,795 research outputs found
Natural Notation for the Domestic Internet of Things
This study explores the use of natural language to give instructions that
might be interpreted by Internet of Things (IoT) devices in a domestic `smart
home' environment. We start from the proposition that reminders can be
considered as a type of end-user programming, in which the executed actions
might be performed either by an automated agent or by the author of the
reminder. We conducted an experiment in which people wrote sticky notes
specifying future actions in their home. In different conditions, these notes
were addressed to themselves, to others, or to a computer agent.We analyse the
linguistic features and strategies that are used to achieve these tasks,
including the use of graphical resources as an informal visual language. The
findings provide a basis for design guidance related to end-user development
for the Internet of Things.Comment: Proceedings of the 5th International symposium on End-User
Development (IS-EUD), Madrid, Spain, May, 201
Meson Thermalization in Various Dimensions
In gauge/gravity duality framework the thermalization of mesons in strongly
coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system,
q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the
horizon formation on the flavour Dq-brane. We calculate the thermalization
time-scale due to a time-dependent change in the baryon number chemical
potential, baryon injection in the field theory. We observe that for such a
general system it has a universal behaviour depending only on the t'Hooft
coupling constant and the two parameters which describe how we inject baryons
into the system. We show that this universal behaviour is independent of the
details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure
Superradiance by mini black holes with mirror
The superradiant scattering of massive scalar particles by a rotating mini
black hole is investigated. Imposing the mirror boundary condition, the system
becomes the so called black-hole bomb where the rotation energy of the black
hole is transferred to the scattered particle exponentially with time. Bulk
emissions as well as brane emissions are considered altogether. It is found
that the largest effects are expected for the brane emission of lower angular
modes with lighter mass and larger angular momentum of the black hole.
Possibilities of the forming the black-hole bomb at the LHC are discussed.Comment: 20 pages, 2 figures, 7 tables. More discussions. To appear in JHE
Holographic studies of quasi-topological gravity
Quasi-topological gravity is a new gravitational theory including
curvature-cubed interactions and for which exact black hole solutions were
constructed. In a holographic framework, classical quasi-topological gravity
can be thought to be dual to the large limit of some non-supersymmetric
but conformal gauge theory. We establish various elements of the AdS/CFT
dictionary for this duality. This allows us to infer physical constraints on
the couplings in the gravitational theory. Further we use holography to
investigate hydrodynamic aspects of the dual gauge theory. In particular, we
find that the minimum value of the shear-viscosity-to-entropy-density ratio for
this model is .Comment: 45 pages, 6 figures. v2: References adde
Stringy effects in black hole decay
We compute the low energy decay rates of near-extremal three(four) charge
black holes in five(four) dimensional N=4 string theory to sub-leading order in
the large charge approximation. This involves studying stringy corrections to
scattering amplitudes of a scalar field off a black hole. We adapt and use
recently developed techniques to compute such amplitudes as near-horizon
quantities. We then compare this with the corresponding calculation in the
microscopic configuration carrying the same charges as the black hole. We find
perfect agreement between the microscopic and macroscopic calculations; in the
cases we study, the zero energy limit of the scattering cross section is equal
to four times the Wald entropy of the black hole.Comment: 32 page
Carboxyhaemoglobin levels and their determinants in older British men
Background: Although there has been concern about the levels of carbon monoxide exposure, particularly among older people, little is known about COHb levels and their determinants in the general population. We examined these issues in a study of older British men.Methods: Cross-sectional study of 4252 men aged 60-79 years selected from one socially representative general practice in each of 24 British towns and who attended for examination between 1998 and 2000. Blood samples were measured for COHb and information on social, household and individual factors assessed by questionnaire. Analyses were based on 3603 men measured in or close to (< 10 miles) their place of residence.Results: The COHb distribution was positively skewed. Geometric mean COHb level was 0.46% and the median 0.50%; 9.2% of men had a COHb level of 2.5% or more and 0.1% of subjects had a level of 7.5% or more. Factors which were independently related to mean COHb level included season (highest in autumn and winter), region (highest in Northern England), gas cooking (slight increase) and central heating (slight decrease) and active smoking, the strongest determinant. Mean COHb levels were more than ten times greater in men smoking more than 20 cigarettes a day (3.29%) compared with non-smokers (0.32%); almost all subjects with COHb levels of 2.5% and above were smokers (93%). Pipe and cigar smoking was associated with more modest increases in COHb level. Passive cigarette smoking exposure had no independent association with COHb after adjustment for other factors. Active smoking accounted for 41% of variance in COHb level and all factors together for 47%.Conclusion: An appreciable proportion of men have COHb levels of 2.5% or more at which symptomatic effects may occur, though very high levels are uncommon. The results confirm that smoking (particularly cigarette smoking) is the dominant influence on COHb levels
M-Branes and Metastable States
We study a supersymmetry breaking deformation of the M-theory background
found in arXiv:hep-th/0012011. The supersymmetric solution is a warped product
of R^{2,1} and the 8-dimensional Stenzel space, which is a higher dimensional
generalization of the deformed conifold. At the bottom of the warped throat
there is a 4-sphere threaded by \tilde{M} units of 4-form flux. The dual
(2+1)-dimensional theory has a discrete spectrum of bound states. We add p
anti-M2 branes at a point on the 4-sphere, and show that they blow up into an
M5-brane wrapping a 3-sphere at a fixed azimuthal angle on the 4-sphere. This
supersymmetry breaking state turns out to be metastable for p / \tilde{M} <
0.054. We find a smooth O(3)-symmetric Euclidean bounce solution in the
M5-brane world volume theory that describes the decay of the false vacuum.
Calculation of the Euclidean action shows that the metastable state is
extremely long-lived. We also describe the corresponding metastable states and
their decay in the type IIA background obtained by reduction along one of the
spatial directions of R^{2,1}.Comment: 33 pages, 5 figures; v2 note adde
Light States in Chern-Simons Theory Coupled to Fundamental Matter
Motivated by developments in vectorlike holography, we study SU(N)
Chern-Simons theory coupled to matter fields in the fundamental representation
on various spatial manifolds. On the spatial torus T^2, we find light states at
small `t Hooft coupling \lambda=N/k, where k is the Chern-Simons level, taken
to be large. In the free scalar theory the gaps are of order \sqrt {\lambda}/N
and in the critical scalar theory and the free fermion theory they are of order
\lambda/N. The entropy of these states grows like N Log(k). We briefly consider
spatial surfaces of higher genus. Based on results from pure Chern-Simons
theory, it appears that there are light states with entropy that grows even
faster, like N^2 Log(k). This is consistent with the log of the partition
function on the three sphere S^3, which also behaves like N^2 Log(k). These
light states require bulk dynamics beyond standard Vasiliev higher spin gravity
to explain them.Comment: 58 pages, LaTeX, no figures, Minor error corrected, references added,
The main results of the paper have not change
Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future
Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.
Holographic DC conductivities from the open string metric
We study the DC conductivities of various holographic models using the open
string metric (OSM), which is an effective metric geometrizing density and
electromagnetic field effect. We propose a new way to compute the nonlinear
conductivity using OSM. As far as the final conductivity formula is concerned,
it is equivalent to the Karch-O'Bannon's real-action method. However, it yields
a geometrical insight and technical simplifications. Especially, a real-action
condition is interpreted as a regular geometry condition of OSM. As
applications of the OSM method, we study several holographic models on the
quantum Hall effect and strange metal. By comparing a Lifshitz background and
the Light-Cone AdS, we show how an extra parameter can change the temperature
scaling behavior of conductivity. Finally we discuss how OSM can be used to
study other transport coefficients, such as diffusion constant, and effective
temperature induced by the effective world volume horizon.Comment: 33 page
- …
