47 research outputs found

    PIN-mediated polar auxin transport regulations in plant tropic responses

    Get PDF
    Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment

    Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment.

    Get PDF
    Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol assisted chemical vapour deposition (AACVD) to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase, and showed excellent antibacterial (vs S.Aureus and E.Coli) ability. Using a combination of transient absorption spectroscopy (TAS), photoluminescence (PL) measurements and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples, and the enhanced UV/visible light photoactivities observed

    Endothelial dysfunction in obese non-hypertensive children without evidence of sleep disordered breathing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial dysfunction is a complication of both obesity and obstructive sleep apnea syndrome (OSAS), the latter being highly prevalent among obese children. It is unknown whether obesity causes endothelial dysfunction in children in the absence of OSAS. This study examines endothelial function in obese and non-obese children without OSAS.</p> <p>Methods</p> <p>Pre-pubertal non-hypertensive children were recruited. Endothelial function was assessed in a morning fasted state, using a modified hyperemic test involving cuff-induced occlusion of the radial and ulnar arteries. The absence of OSAS was confirmed by overnight polysomnography. Anthropometry was also performed.</p> <p>Results</p> <p>55 obese children (mean age 8.6 ± 1.4 years, mean BMI z-score: 2.3 ± 0.3) were compared to 50 non-obese children (mean age 8.0 ± 1.6 years, mean BMI z-score 0.3 ± 0.9). Significant delays to peak capillary reperfusion after occlusion release occurred in obese compared to non-obese children (45.3 ± 21.9 sec <it>vs</it>. 31.5 ± 14.1 sec, p < 0.01), but no differences in the magnitude of hyperemia emerged. Time to peak reperfusion and percentage of body fat were positively correlated (r = 0.365, p < 0.01).</p> <p>Conclusions</p> <p>Our findings confirm that endothelial dysfunction occurs early in life in obese children, even in the absence of OSAS. Thus, mechanisms underlying endothelial dysfunction in pediatric obesity are operational in the absence of sleep-disordered breathing.</p

    Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in Arabidopsis thaliana

    No full text
    Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME
    corecore