165 research outputs found

    Effective AdS/renormalized CFT

    Full text link
    For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a double-trace deformation and spontaneously broken CFT. For the second dual pair, we compute scaling corrections at the UV and IR fixed points of the RG flow triggered by the double-trace deformation. For the last case, we discuss whether our prescription is sensitive to the AdS interior or equivalently, the IR physics of the dual field theory.Comment: 20 pages, 3 figure

    Virtual Compton Scattering off a Spinless Target in AdS/QCD

    Get PDF
    We study the doubly virtual Compton scattering off a spinless target γPγP\gamma^*P\to\gamma^*P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP

    Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT

    Full text link
    We use AdS/CFT correspondence to study two-particle correlations in heavy ion collisions at strong coupling. Modeling the colliding heavy ions by shock waves on the gravity side, we observe that at early times after the collision there are long-range rapidity correlations present in the two-point functions for the glueball and the energy-momentum tensor operators. We estimate rapidity correlations at later times by assuming that the evolution of the system is governed by ideal Bjorken hydrodynamics, and find that glueball correlations in this state are suppressed at large rapidity intervals, suggesting that late-time medium dynamics can not "wash out" the long-range rapidity correlations that were formed at early times. These results may provide an insight on the nature of the "ridge" correlations observed in heavy ion collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde

    Self-bound dense objects in holographic QCD

    Full text link
    We study a self-bound dense object in the hard wall model. We consider a spherically symmetric dense object which is characterized by its radial density distribution and non-uniform but spherically symmetric chiral condensate. For this we analytically solve the partial differential equations in the hard wall model and read off the radial coordinate dependence of the density and chiral condensate according to the AdS/CFT correspondence. We then attempt to describe nucleon density profiles of a few nuclei within our framework and observe that the confinement scale changes from a free nucleon to a nucleus. We briefly discuss how to include the effect of higher dimensional operator into our study. We finally comment on possible extensions of our work.Comment: 17 pages, 5 figures, figures replaced, minor revision, to appear in JHE

    In-medium hadronic spectral functions through the soft-wall holographic model of QCD

    Full text link
    We study the scalar glueball and vector meson spectral functions in a hot and dense medium by means of the soft-wall holographic model of QCD. Finite temperature and density effects are implemented through the AdS/RN metric. We analyse the behaviour of the hadron masses and widths in the (T,μ)(T,\mu) plane, and compare our results with the experimental ones and with other theoretical determinations.Comment: 16 pages, 6 figures. matching the published versio

    Symmetry energy of dense matter in holographic QCD

    Full text link
    We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small densities, it exhibits a power law behavior with the density, Esymρ1/2E_{\rm sym} \sim \rho^{1/2}.Comment: 9 pages, 3 figure

    Holographic Hadrons in a Confining Finite Density Medium

    Full text link
    We study a sector of the hadron spectrum in the presence of finite baryon density. We use a non-supersymmetric gravity dual to a confining guage theory which exhibits a running dilaton. The interaction of mesons with the finite density medium is encoded in the dual theory by a force balancing between flavor D7-branes and a baryon vertex provided by a wrapped D5-brane. When the current quark mass m_q is sufficiently large, the meson mass reduces, exhibiting an interesting spectral flow as we increase the baryon density while it has a more complicated behaviour for very small m_q.Comment: 34 pages, 20 figures, errors for some figures are fixe

    Scalar and vector mesons of flavor chiral symmetry breaking in the Klebanov-Strassler background

    Full text link
    Recently, Dymarsky, Kuperstein and Sonnenschein constructed an embedding of flavor D7- and anti-D7-branes in the Klebanov-Strassler geometry that breaks the supersymmetry of the background, yet is stable. In this article, we study in detail the spectrum of vector mesons in this new model of flavor chiral symmetry breaking and commence an analytical analysis of the scalar mesons in this setup.Comment: v1: 35 pages, 5 figures, 4 tables, includes self-contained review of DKS construction; v2: corrected signs in eqs. (2.22) and (2.23), improved discussion of scalar mesons in section 3.2; v3: major revision of the results on scalar mesons, version submitted to JHEP; v4: version accepted by JHE

    Nuclear matter to strange matter transition in holographic QCD

    Full text link
    We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.Comment: 13 pages, 14 figure
    corecore