53 research outputs found

    The CMS Statistical Analysis and Combination Tool: Combine

    Get PDF
    Metrics: https://link.springer.com/article/10.1007/s41781-024-00121-4/metricsThis paper describes the Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run Combine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of Combine. However, the online documentation referenced within this paper provides an up-to-date and complete user guide.CERN (European Organization for Nuclear Research)STFC (United Kingdom)Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundatio

    Energy-scaling behavior of intrinsic transverse-momentum parameters in Drell-Yan simulation

    Get PDF
    Data Availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy https://dx.doi.org/10.7483/OPENDATA.CMS.7347.JDWH .A preprint version of the article is available on arXiv, arXiv:2409.17770v2 [hep-ph] (https://arxiv.org/abs/2409.17770). [v2] Tue, 8 Apr 2025 23:23:48 UTC (450 KB). Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/GEN-22-001 (CMS Public Pages). Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex). Report numbers: CMS-GEN-22-001, CERN-EP-2024-216An analysis is presented based on models of the intrinsic transverse momentum (intrinsic ) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans 3 orders of magnitude in center-of-mass energy and 2 orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic parameters, independent of the dilepton invariant mass at a given center-of-mass energy.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA)

    Intelligent layout planning for rapid prototyping

    No full text
    Significant savings in cost and time can be achieved in rapid prototyping (RP) by manufacturing multiple parts in a single setup to achieve efficient machine volume utilization. This paper reports the design and implementation of a system for the optimal layout planning of 3D parts for a RP process. A genetic algorithm (GA) based search strategy has been used to arrive at a good packing layout for a chosen set of parts and RP process. A two stage approach has been proposed to initially short-list acceptable orientations for each part followed by the search for a layout plan which optimizes in terms of final product quality and build time. The GA uses a hybrid objective function comprising of the weighted measures like part build height, staircase effect, volume and area-of-contact of support structures. In essence it captures the key metrics of efficiency and goodness of packing for RP. The final layout plan is produced in the form of a composite part CAD model which can be directly exported to a RP machine for manufacturing. Design methodology of the system has been presented with some representative case studies

    Aeration step method for k

    No full text
    Background Determination of the volumetric oxygen transfer coefficient (k(L)a) plays an important role in the design and characterization of bioreactors. Among all methods available, few techniques are suitable for the determination of k(L)a in pneumatic bioreactors during the course of cultivations. The present work proposes a new aeration step method for k(L)a evaluation in pneumatic bioreactors during biological consumption of oxygen. Results The aeration step method consisted in promoting step changes in the specific air flow rate (phi(air)) to change the dissolved oxygen concentration during cultivations, allowing the measurement of both overall oxygen transfer coefficient (k(L)a) and specific oxygen uptake rate (Q(O2)). These parameters were determined experimentally by employing two microorganisms, one a strict aerobe (Bacillus subtilis) and the other a facultative aerobe (Saccharomyces cerevisiae), for phi(air) values ranging from 2.0 to 5.0 vvm. For the purpose of comparison, k(L)a was also determined in experiments using water as the liquid phase, employing a dynamic gassing-out method. The k(L)a values during the cultivations ranged from 0.0137 to 0.0545 s(-1), while Q(O2) varied from 0.44 to 10.06 mol kg(-1) h(-1). The results obtained are shown to be reliable, exhibited excellent reproducibility and are in agreement with other values reported in the literature by different methodologies. Conclusion The new aeration step method proved to be reliable as an alternative technique for the determination of k(L)a and Q(O2) during microbial cultivation in pneumatic bioreactors. (c) 2019 Society of Chemical IndustryPrograma de Recursos Humanos da Agencia Nacional do Petroleo, Gas Natural e BiocombustiveisConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos, Dept Chem Engn, BR-13565905 Sao Carlos, SP, BrazilSao Paulo State Univ, Fac Pharmaceut Sci, Dept Bioproc & Biotechnol, Araraquara, BrazilFed Inst Educ Sci & Technol Sao Paulo, Capivari, BrazilSao Paulo State Univ, Fac Pharmaceut Sci, Dept Bioproc & Biotechnol, Araraquara, BrazilPrograma de Recursos Humanos da Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis: PRH/ANP-44CNPq: 478472/2011-0FAPESP: 2011/23807-1FAPESP: 2012/17756-8FAPESP: 2018/11405-
    corecore