14,688 research outputs found
Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment
© 2016 Elsevier Ltd. For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m2 h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m2 h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment
Jet quenching in shock waves
We study the propagation of an ultrarelativistic light quark jet inside a
shock wave using the holographic principle. The maximum stopping distance and
its dependency on the energy of the jet is obtained
SECaps: A Sequence Enhanced Capsule Model for Charge Prediction
Automatic charge prediction aims to predict appropriate final charges
according to the fact descriptions for a given criminal case. Automatic charge
prediction plays a critical role in assisting judges and lawyers to improve the
efficiency of legal decisions, and thus has received much attention.
Nevertheless, most existing works on automatic charge prediction perform
adequately on high-frequency charges but are not yet capable of predicting
few-shot charges with limited cases. In this paper, we propose a Sequence
Enhanced Capsule model, dubbed as SECaps model, to relieve this problem.
Specifically, following the work of capsule networks, we propose the seq-caps
layer, which considers sequence information and spatial information of legal
texts simultaneously. Then we design a attention residual unit, which provides
auxiliary information for charge prediction. In addition, our SECaps model
introduces focal loss, which relieves the problem of imbalanced charges.
Comparing the state-of-the-art methods, our SECaps model obtains 4.5% and 6.4%
absolutely considerable improvements under Macro F1 in Criminal-S and
Criminal-L respectively. The experimental results consistently demonstrate the
superiorities and competitiveness of our proposed model.Comment: 13 pages, 3figures, 5 table
Small Hairy Black Holes in Global AdS Spacetime
We study small charged black holes in global AdS spacetime in the presence of
a charged massless minimally coupled scalar field. In a certain parameter range
these black holes suffer from well known superradiant instabilities. We
demonstrate that the end point of the resultant tachyon condensation process is
a hairy black hole which we construct analytically in a perturbative expansion
in the black hole radius. At leading order our solution is a small undeformed
RNAdS black hole immersed into a charged scalar condensate that fills the AdS
`box'. These hairy black hole solutions appear in a two parameter family
labelled by their mass and charge. Their mass is bounded from below by a
function of their charge; at the lower bound a hairy black hole reduces to a
regular horizon free soliton which can also be thought of as a nonlinear Bose
condensate. We compute the microcanonical phase diagram of our system at small
mass, and demonstrate that it exhibits a second order `phase transition'
between the RNAdS black hole and the hairy black hole phases.Comment: 68+1 pages, 18 figures, JHEP format. v2 : small typos corrected and a
reference adde
On the Beaming of Gluonic Fields at Strong Coupling
We examine the conditions for beaming of the gluonic field sourced by a heavy
quark in strongly-coupled conformal field theories, using the AdS/CFT
correspondence. Previous works have found that, contrary to naive expectations,
it is possible to set up collimated beams of gluonic radiation despite the
strong coupling. We show that, on the gravity side of the correspondence, this
follows directly (for arbitrary quark motion, and independently of any
approximations) from the fact that the string dual to the quark remains
unexpectedly close to the AdS boundary whenever the quark moves
ultra-relativistically. We also work out the validity conditions for a related
approximation scheme that proposed to explain the beaming effect though the
formation of shock waves in the bulk fields emitted by the string. We find that
these conditions are fulfilled in the case of ultra-relativistic uniform
circular motion that motivated the proposal, but unfortunately do not hold for
much more general quark trajectories.Comment: 1+33 pages, 2 figure
Peak reduction technique in commutative algebra
The "peak reduction" method is a powerful combinatorial technique with
applications in many different areas of mathematics as well as theoretical
computer science. It was introduced by Whitehead, a famous topologist and group
theorist, who used it to solve an important algorithmic problem concerning
automorphisms of a free group. Since then, this method was used to solve
numerous problems in group theory, topology, combinatorics, and probably in
some other areas as well.
In this paper, we give a survey of what seems to be the first applications of
the peak reduction technique in commutative algebra and affine algebraic
geometry.Comment: survey; 10 page
Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT
We use AdS/CFT correspondence to study two-particle correlations in heavy ion
collisions at strong coupling. Modeling the colliding heavy ions by shock waves
on the gravity side, we observe that at early times after the collision there
are long-range rapidity correlations present in the two-point functions for the
glueball and the energy-momentum tensor operators. We estimate rapidity
correlations at later times by assuming that the evolution of the system is
governed by ideal Bjorken hydrodynamics, and find that glueball correlations in
this state are suppressed at large rapidity intervals, suggesting that
late-time medium dynamics can not "wash out" the long-range rapidity
correlations that were formed at early times. These results may provide an
insight on the nature of the "ridge" correlations observed in heavy ion
collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde
Colliding AdS gravitational shock waves in various dimensions and holography
The formation of marginally trapped surfaces in the off-center collision of
two shock waves on AdS_D (with D=4,5,6,7 and 8) is studied numerically. We
focus on the case when the two waves collide with nonvanishing impact parameter
while the sources are located at the same value of the holographic coordinate.
In all cases a critical value of the impact parameter is found above which no
trapped surface is formed. The numerical results show the existence of a simple
scaling relation between the critical impact parameter and the energy of the
colliding waves. Using the isometries of AdS_D we relate the solutions obtained
to the ones describing the collision of two waves with a purely holographic
impact parameter. This provides a gravitational dual for the head-on collision
of two lumps of energy of unequal size.Comment: 25 pages, 11 figures. v2: minor changes, typos corrected. To appear
in JHE
A microchip optomechanical accelerometer
The monitoring of accelerations is essential for a variety of applications
ranging from inertial navigation to consumer electronics. The basic operation
principle of an accelerometer is to measure the displacement of a flexibly
mounted test mass; sensitive displacement measurement can be realized using
capacitive, piezo-electric, tunnel-current, or optical methods. While optical
readout provides superior displacement resolution and resilience to
electromagnetic interference, current optical accelerometers either do not
allow for chip-scale integration or require bulky test masses. Here we
demonstrate an optomechanical accelerometer that employs ultra-sensitive
all-optical displacement read-out using a planar photonic crystal cavity
monolithically integrated with a nano-tethered test mass of high mechanical
Q-factor. This device architecture allows for full on-chip integration and
achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth
greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical
power requirements. Moreover, the nano-gram test masses used here allow for
optomechanical back-action in the form of cooling or the optical spring effect,
setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure
Pseudo-Killing Spinors, Pseudo-supersymmetric p-branes, Bubbling and Less-bubbling AdS Spaces
We consider Einstein gravity coupled to an n-form field strength in D
dimensions. Such a theory cannot be supersymmetrized in general, we
nevertheless propose a pseudo-Killing spinor equation and show that the AdS X
Sphere vacua have the maximum number of pseudo-Killing spinors, and hence are
fully pseudo-supersymmetric. We show that extremal p-branes and their
intersecting configurations preserve fractions of the pseudo-supersymmetry. We
study the integrability condition for general (D,n) and obtain the additional
constraints that are required so that the existence of the pseudo-Killing
spinors implies the Einstein equations of motion. We obtain new
pseudo-supersymmetric bubbling AdS_5 X S^5 spaces that are supported by a
non-self-dual 5-form. This demonstrates that non-supersymmegtric conformal
field theories may also have bubbling states of arbitrary droplets of free
fermions in the phase space. We also obtain an example of less-bubbling AdS
geometry in D=8, whose bubbling effects are severely restricted by the
additional constraint arising from the integrability condition.Comment: typos corrected, extra comments and references added, version
appeared in JHE
- …
