12,124 research outputs found
Casimir Effect for the Piecewise Uniform String
The Casimir energy for the transverse oscillations of a piecewise uniform
closed string is calculated. In its simplest version the string consists of two
parts I and II having in general different tension and mass density, but is
always obeying the condition that the velocity of sound is equal to the
velocity of light. The model, first introduced by Brevik and Nielsen in 1990,
possesses attractive formal properties implying that it becomes easily
regularizable by several methods, the most powerful one being the contour
integration method. We also consider the case where the string is divided into
2N pieces, of alternating type-I and type-II material. The free energy at
finite temperature, as well as the Hagedorn temperature, are found. Finally, we
make some remarks on the relationship between this kind of theory and the
theory of quantum star graphs, recently considered by Fulling et al.Comment: 10 pages, 1 figure, Submitted to the volume "Cosmology, Quantum
Vacuum, and Zeta Functions", in honour of Professor Emilio Elizalde on the
occasion of his 60th birthda
Non-extremal black holes from the generalised r-map
We review the timelike dimensional reduction of a class of five-dimensional
theories that generalises 5D, N = 2 supergravity coupled to vector multiplets.
As an application we construct instanton solutions to the four-dimensional
Euclidean theory, and investigate the criteria for solutions to lift to static
non-extremal black holes in five dimensions.
We focus specifically on two classes of models: STU-like models, and models
with a block diagonal target space metric. For STU-like models the second order
equations of motion of the four-dimensional theory can be solved explicitly,
and we obtain the general solution. For block diagonal models we find a
restricted class of solutions, where the number of independent scalar fields
depends on the number of blocks. When lifting these solutions to five
dimensions we show, by explicit calculation, that one obtains static
non-extremal black holes with scalar fields that take finite values on the
horizon only if the number of integration constants reduces by exactly half.Comment: 22 pages. Based on talk by OV at "Black Objects in Supergravity
School" (BOSS2011), INFN, Frascati, Italy, 9-13 May, 201
A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study
© 2015 Elsevier B.V. A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH. 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63. mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions
Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels
To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance
Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/β-catenin signalling pathway
Objectives: Interaction between neoplastic and stromal cells plays an important role in tumour progression. It was recently found that WNT2 was frequently overexpressed in fibroblasts isolated from tumour tissue tumour fibroblasts (TF) compared with fibroblasts from non-tumour tissue normal fibroblasts in oesophageal squamous cell carcinoma (OSCC). This study aimed to investigate the effect of TF-secreted Wnt2 in OSCC development via the tumour - stroma interaction. Methods: Quantitative PCR, western blotting, immunohistochemistry and immunofluorescence were used to study the expression pattern of Wnt2 and its effect on the Wnt/β-catenin pathway. A Wnt2-secreting system was established in Chinese hamster ovary cells and its conditioned medium was used to study the role of Wnt2 in cell proliferation and invasion. Results: Expression of Wnt2 could only be detected in TF but not in OSCC cancer cell lines. In OSCC tissues, Wnt2 (+) cells were mainly detected in the boundary between stroma and tumour tissue or scattered within tumour tissue. In this study, Wnt2-positive OSCC was defined when five or more Wnt2(+) cells were observed in 2003X microscopy field. Interestingly, Wnt2-positive OSCC (22/51 cases) was significantly associated with lymph node metastases (p=0.001), advanced TNM stage (p=0.001) and disease-specific survival (p<0.0001). Functional study demonstrated that secreted Wnt2 could promote oesophageal cancer cell growth by activating the Wnt/β-catenin signalling pathway and subsequently upregulated cyclin D1 and c-myc expression. Further study found that Wnt2 could enhance cell motility and invasiveness by inducing epithelial-mesenchymal transition. Conclusions: TF-secreted Wnt2 acts as a growth and invasion-promoting factor through activating the canonical Wnt/β-catenin signalling pathway in oesophageal cancer cells.published_or_final_versio
Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO/SrTiO Interfaces
A two dimensional electronic system with novel electronic properties forms at
the interface between the insulators LaAlO and SrTiO. Samples
fabricated until now have been found to be either magnetic or superconducting,
depending on growth conditions. We combine transport measurements with
high-resolution magnetic torque magnetometry and report here evidence of
magnetic ordering of the two-dimensional electron liquid at the interface. The
magnetic ordering exists from well below the superconducting transition to up
to 200 K, and is characterized by an in-plane magnetic moment. Our results
suggest that there is either phase separation or coexistence between magnetic
and superconducting states. The coexistence scenario would point to an
unconventional superconducting phase in the ground state.Comment: 10 pages, 4 figure
Holographic flows to IR Lifshitz spacetimes
Recently we studied `vanishing' horizon limits of `boosted' black D3-brane
geometry \cite{hsnr}. The type IIB solutions obtained by taking these special
double limits were found to describe nonrelativistic Lifshitz spacetimes at
zero temperature. In the present work we study these limits for TsT black-hole
solutions which include -field. The new Galilean solutions describe a
holographic RG flow from Schr\"odinger () spacetime in UV to a Lifshitz
universe () in the IR.Comment: 10 pages; v2: A bad typo in eq.8 corrected; v3: Discussion and
reference on Kaigorodov spaces included, correction in sec-3, to be published
in JHE
Running Scaling Dimensions in Holographic Renormalization Group Flows
Holographic renormalization group flows can be interpreted in terms of
effective field theory. Based on such an interpretation, a formula for the
running scaling dimensions of gauge-invariant operators along such flows is
proposed. The formula is checked for some simple examples from the AdS/CFT
correspondence, but can be applied also in non-AdS/non-CFT cases.Comment: 14 pages, 2 figure
Phase structure of black branes in grand canonical ensemble
This is a companion paper of our previous work [1] where we studied the
thermodynamics and phase structure of asymptotically flat black -branes in a
cavity in arbitrary dimensions in a canonical ensemble. In this work we
study the thermodynamics and phase structure of the same in a grand canonical
ensemble. Since the boundary data in two cases are different (for the grand
canonical ensemble boundary potential is fixed instead of the charge as in
canonical ensemble) the stability analysis and the phase structure in the two
cases are quite different. In particular, we find that there exists an analog
of one-variable analysis as in canonical ensemble, which gives the same
stability condition as the rather complicated known (but generalized from black
holes to the present case) two-variable analysis. When certain condition for
the fixed potential is satisfied, the phase structure of charged black
-branes is in some sense similar to that of the zero charge black -branes
in canonical ensemble up to a certain temperature. The new feature in the
present case is that above this temperature, unlike the zero-charge case, the
stable brane phase no longer exists and `hot flat space' is the stable phase
here. In the grand canonical ensemble there is an analog of Hawking-Page
transition, even for the charged black -brane, as opposed to the canonical
ensemble. Our study applies to non-dilatonic as well as dilatonic black
-branes in space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded,
references updated, typos corrected, published in JHEP 1105:091,201
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
- …
