81 research outputs found
Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films
This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m-2. The optical-structural, mechanical and barrier property of BC films were studied and compared with those of highly beaten VC films. The Youngs moduli and tensile index of the BC films are much higher than those obtained for VC (14.5 16.2 GPa vs 10.8 8.7 GPa and 146.7 64.8 N.m.g-1 vs 82.8 40.5 N.m.g-1), respectively. Calendering increased significantly the transparency of BC films from 53.0 % to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.The authors thank FCT (Fundação para a Ciência e Tecnologia) and FEDER (Fundo Europeu de
Desenvolvimento Regional) for the financial support of the project FCT PTDC/AGR-FOR/3090/2012— FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa
All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched
GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15 ∶ 00 UTC and 1 October 2019 15 ∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥ 3 M⊙ ) is increased compared to GWTC-2, with total masses from ∼ 14 M ⊙ for GW190924_021846 to ∼ 182 M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe
All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs
We present the first results from an all-sky all-frequency (ASAF) search for
an anisotropic stochastic gravitational-wave background using the data from the
first three observing runs of the Advanced LIGO and Advanced Virgo detectors.
Upper limit maps on broadband anisotropies of a persistent stochastic
background were published for all observing runs of the LIGO-Virgo detectors.
However, a broadband analysis is likely to miss narrowband signals as the
signal-to-noise ratio of a narrowband signal can be significantly reduced when
combined with detector output from other frequencies. Data folding and the
computationally efficient analysis pipeline, {\tt PyStoch}, enable us to
perform the radiometer map-making at every frequency bin. We perform the search
at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every
frequency bin of width ~Hz in the range ~Hz, except for bins
that are likely to contain instrumental artefacts and hence are notched. We do
not find any statistically significant evidence for the existence of narrowband
gravitational-wave signals in the analyzed frequency bins. Therefore, we place
confidence upper limits on the gravitational-wave strain for each
pixel-frequency pair, the limits are in the range . In addition, we outline a method to identify candidate
pixel-frequency pairs that could be followed up by a more sensitive (and
potentially computationally expensive) search, e.g., a matched-filtering-based
analysis, to look for fainter nearly monochromatic coherent signals. The ASAF
analysis is inherently independent of models describing any spectral or spatial
distribution of power. We demonstrate that the ASAF results can be
appropriately combined over frequencies and sky directions to successfully
recover the broadband directional and isotropic results
Fluorescent amino acids as versatile building blocks for chemical biology
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein–protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging. [Figure not available: see fulltext.]
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
Analytical solutions for the stiffness and damping coefficients of squeeze films in MEMS devices with perforated back plates
Closed-form expressions for the stiffness and the damping coefficients of a squeeze film are derived for MEMS devices with perforated back plates. Two kinds of perforation configurations are considered—staggered and matrix or non-staggered configuration. The analytical solutions are motivated from the observation of repetitive pressure patterns obtained fromnumerical (FEM) solutions of the compressible Reynolds equation for the two configurations using ANSYS. A single pressure pattern is isolated and further subdivided into circular pressure cells. Circular geometry is used based on observed symmetry. Using suitable boundary conditions, the Reynolds equation is analytically solved over the pressure cells. The complex pressure obtained is used to identify the stiffness and damping offered by the pressure cells. The stiffness and damping forces due to pressure cells within a pattern are added up separately. In turn, the stiffness and damping due to all the patterns are summed up resulting in the stiffness and damping forces due to the entire squeeze film. The damping and spring forces thus obtained analytically are compared with those obtained from the FEM simulations in ANSYS. The match is found to be very good. The regime of validity and limitations of the analytical solutions are assessed in terms of design parameters such as pitch to air gap, hole length to diameter and pitch to hole radius ratios. The analysis neglects inertial effects. Hence, the results are presented for low values of Reynolds number
Synthesis of ciprofloxacin-conjugated poly (L-lactic acid) polymer for nanofiber fabrication and antibacterial evaluation
Sharad P Parwe, Priti N Chaudhari, Kavita K Mohite, Balaji S Selukar, Smita S Nande, Baijayantimala Garnaik Polymer Science and Engineering Division, National Chemical Laboratory, Pune, India Abstract: Ciprofloxacin was conjugated with polylactide (PLA) via the secondary amine group of the piperazine ring using PLA and 7-(4-(2-Chloroacetyl) piperazin-1-yl)-1-cyclopropyl-6-fluoro-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid. Zinc prolinate, a biocompatible catalyst was synthesized, characterized, and used in ring opening polymerization of L-lactide. Five different kinds of OH-terminated poly(L-lactide) (two-, three-, four-, six-arm, star-shaped) homopolymers were synthesized by ring opening polymerization of L-lactide in the presence of dodecanol, glycerol, pentaerythritol, dipentaerythritol as initiator and zinc prolinate as a catalyst. The structures of the polymers and conjugates were thoroughly characterized by means of gel permeation chromatography, matrix-assisted laser desorption/ionization – time of flight mass spectrometry, and nuclear magnetic resonance spectroscopy. PLA (molecular weight =100,000) and ciprofloxacin conjugated PLA were used for fabrication of nonwoven nanofiber mat (diameter ranges; 150–400 nm) having pore size (62–102 nm) using electrospinning. The microbiological assessment shows that the release of ciprofloxacin possesses antimicrobial activity. The drug-release behavior of the mat was studied to reveal potential application as a drug delivery system. The result shows that the ciprofloxacin release rates of the PLA conjugate nonwoven nanofiber mat could be controlled by the drug loading content and the release medium. The development of a biodegradable ciprofloxacin system, based on nonwoven nanofiber mat, should be of great interest in drug delivery systems. Keywords: zinc prolinate, ciprofloxacin conjugated polylactides, CP-PLA, electrospinning, nonwoven nanofibers, drug release, antibacterial activity, MD
An analytical formula and FEM simulations for the viscous damping of a periodic perforated MEMS microstructure outside the lubrication approximation
- …
