1,533 research outputs found
Entangled Dilaton Dyons
Einstein-Maxwell theory coupled to a dilaton is known to give rise to
extremal solutions with hyperscaling violation. We study the behaviour of these
solutions in the presence of a small magnetic field. We find that in a region
of parameter space the magnetic field is relevant in the infra-red and
completely changes the behaviour of the solution which now flows to an
attractor. As a result there is an extensive ground state
entropy and the entanglement entropy of a sufficiently big region on the
boundary grows like the volume. In particular, this happens for values of
parameters at which the purely electric theory has an entanglement entropy
growing with the area, , like which is believed to be a
characteristic feature of a Fermi surface. Some other thermodynamic properties
are also analysed and a more detailed characterisation of the entanglement
entropy is also carried out in the presence of a magnetic field. Other regions
of parameter space not described by the end point are also
discussed.Comment: Some comments regarding comparison with weakly coupled Fermi liquid
changed, typos corrected and caption of a figure modifie
Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity
We study the two-point function for fermionic operators in a class of
strongly coupled systems using the gauge-gravity correspondence. The gravity
description includes a gauge field and a dilaton which determines the gauge
coupling and the potential energy. Extremal black brane solutions in this
system typically have vanishing entropy. By analyzing a charged fermion in
these extremal black brane backgrounds we calculate the two-point function of
the corresponding boundary fermionic operator. We find that in some region of
parameter space it is of Fermi liquid type. Outside this region no well-defined
quasi-particles exist, with the excitations acquiring a non-vanishing width at
zero frequency. At the transition, the two-point function can exhibit non-Fermi
liquid behaviour.Comment: 52 pages, 6 figures. v3: Appendix F added showing numerical
interpolation between the near-horizon region and AdS4. Additional minor
comments also adde
Lifshitz/Schr\"odinger D-p-branes and dynamical exponents
We extend our earlier study of special double limits of `boosted'
black hole solutions to include all black D-branes of type II strings. We
find that Lifshitz solutions can be obtained in generality, with varied
dynamical exponents, by employing these limits. We then study such double
limits for `boosted' D-brane bubble solutions and find that the resulting
non-relativistic solutions instead describe Schr\"odinger like spacetimes,
having varied dynamical exponents. We get a simple map between these Lifshitz &
Schr\"odinger solutions and a relationship between two types of dynamical
exponents. We also discuss about the singularities of the Lifshitz solutions
and an intriguing thermodynamic duality.Comment: 20 pages; 3 figures; v3: similar to JHE
Schr\"odinger Holography with and without Hyperscaling Violation
We study the properties of the Schr\"odinger-type non-relativistic holography
for general dynamical exponent z with and without hyperscaling violation
exponent \theta. The scalar correlation function has a more general form due to
general z as well as the presence of \theta, whose effects also modify the
scaling dimension of the scalar operator. We propose a prescription for minimal
surfaces of this "codimension 2 holography," and demonstrate the (d-1)
dimensional area law for the entanglement entropy from (d+3) dimensional
Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z <
d+2, even without hyperscaling violation, which interpolates between the
logarithmic violation and extensive volume dependence of entanglement entropy.
Similar violations are also found in the presence of the hyperscaling
violation. Their dual field theories are expected to have novel phases for the
parameter range, including Fermi surface. We also analyze string theory
embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected,
references added, v3: typos corrected, references added, published versio
Stability Constraints on Classical de Sitter Vacua
We present further no-go theorems for classical de Sitter vacua in Type II
string theory, i.e., de Sitter constructions that do not invoke
non-perturbative effects or explicit supersymmetry breaking localized sources.
By analyzing the stability of the 4D potential arising from compactification on
manfiolds with curvature, fluxes, and orientifold planes, we found that
additional ingredients, beyond the minimal ones presented so far, are necessary
to avoid the presence of unstable modes. We enumerate the minimal setups for
(meta)stable de Sitter vacua to arise in this context.Comment: 18 pages; v2: argument improved, references adde
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS
We study the formation of marginally trapped surfaces in the head-on
collision of two ultrarelativistic charges in space-time. The metric of
ultrarelativistic charged particles in is obtained by boosting
Reissner-Nordstr\"om space-time to the speed of light. We show that
formation of trapped surfaces on the past light cone is only possible when
charge is below certain critical - situation similar to the collision of two
ultrarelativistic charges in Minkowski space-time. This critical value depends
on the energy of colliding particles and the value of a cosmological constant.
There is richer structure of critical domains in case. In this case
already for chargeless particles there is a critical value of the cosmological
constant only below which trapped surfaces formation is possible. Appearance of
arbitrary small nonzero charge significantly changes the physical picture.
Critical effect which has been observed in the neutral case does not take place
more. If the value of the charge is not very large solution to the equation on
trapped surface exists for any values of cosmological radius and energy density
of shock waves. Increasing of the charge leads to decrease of the trapped
surface area, and at some critical point the formation of trapped surfaces of
the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
Three little pieces for computer and relativity
Numerical relativity has made big strides over the last decade. A number of
problems that have plagued the field for years have now been mostly solved.
This progress has transformed numerical relativity into a powerful tool to
explore fundamental problems in physics and astrophysics, and I present here
three representative examples. These "three little pieces" reflect a personal
choice and describe work that I am particularly familiar with. However, many
more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation:
100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech
Republic. To appear in the Proceedings (Edition Open Access). Collects
results appeared in journal articles [72,73, 122-124
OCTraN: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios
Modern approaches for vision-centric environment perception for autonomous
navigation make extensive use of self-supervised monocular depth estimation
algorithms that output disparity maps. However, when this disparity map is
projected onto 3D space, the errors in disparity are magnified, resulting in a
depth estimation error that increases quadratically as the distance from the
camera increases. Though Light Detection and Ranging (LiDAR) can solve this
issue, it is expensive and not feasible for many applications. To address the
challenge of accurate ranging with low-cost sensors, we propose, OCTraN, a
transformer architecture that uses iterative-attention to convert 2D image
features into 3D occupancy features and makes use of convolution and transpose
convolution to efficiently operate on spatial information. We also develop a
self-supervised training pipeline to generalize the model to any scene by
eliminating the need for LiDAR ground truth by substituting it with
pseudo-ground truth labels obtained from boosted monocular depth estimation.Comment: This work was accepted as a spotlight presentation at the
Transformers for Vision Workshop @CVPR 202
- …
