344 research outputs found
The effects of supernovae on the dynamical evolution of binary stars and star clusters
In this chapter I review the effects of supernovae explosions on the
dynamical evolution of (1) binary stars and (2) star clusters.
(1) Supernovae in binaries can drastically alter the orbit of the system,
sometimes disrupting it entirely, and are thought to be partially responsible
for `runaway' massive stars - stars in the Galaxy with large peculiar
velocities. The ejection of the lower-mass secondary component of a binary
occurs often in the event of the more massive primary star exploding as a
supernova. The orbital properties of binaries that contain massive stars mean
that the observed velocities of runaway stars (10s - 100s km s) are
consistent with this scenario.
(2) Star formation is an inherently inefficient process, and much of the
potential in young star clusters remains in the form of gas. Supernovae can in
principle expel this gas, which would drastically alter the dynamics of the
cluster by unbinding the stars from the potential. However, recent numerical
simulations, and observational evidence that gas-free clusters are observed to
be bound, suggest that the effects of supernova explosions on the dynamics of
star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin
and Athem Alsabti. This version replaces an earlier version that contained
several typo
The Cauvery Conflict (NIAS Backgrounder No. B5-2010)
T he conflict over sharing of the
waters of the Cauvery has
spread over more than a century, involving
four prominent contenders in South
India– the riparian states of Karnataka,
Tamil Nadu, Kerala and the union
territory of Pondicherry. Karnataka and
Tamil Nadu have historically clashed on
the issue, dating back to the times of the
British-controlled Madras Presidency and
the Princely State of Mysore while Kerala
entered the fray on the reorganisation of
states in 1956 and Pondicherry, only in
the 1970s.
While two treaties, the Agreements of
1892 and 1924, held the peace between
Mysore and Madras through the last few
decades of the nineteenth century and the
first half of the twentieth, the sharing of
Cauvery waters once again turned
contentious with Tamil Nadu alleging a
violation of the terms of one of the treaties
by Karnataka, and conflicting
interpretations by the two states of a
clause of the 1924 agreement. Tamil Nadu stood at a historical advantage in terms
of irrigation development and Karnataka
claimed its right to accelerate its
exploitation of the waters. Through the
1960s, ’70s and ’80s, series of talks
between the states failed to establish a
solution agreeable to all the parties
involved. Finally, in 1990, the Cauvery
Water Disputes Tribunal was instituted
with the purpose of arriving at a watersharing
formula between the states. The
Tribunal released an interim order in
1991 and eventually, 17 years after its
creation, announced its final verdict in
2007. However, the order is as yet
unimplemented as a Special Leave
Petition on the matter remains pending
in the Supreme Court
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells
available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Spondylodiscitis following endovascular abdominal aortic aneurysm repair: imaging perspectives from a single centre's experience.
OBJECTIVE: Very few reports have previously described spondylodiscitis as a potential complication of endovascular aortic aneurysm repair (EVAR). We present to our knowledge the first case series of spondylodiscitis following EVAR based on our institution's experience over an 11-year period. Particular attention is paid to the key imaging features and challenges encountered when performing spinal imaging in this complex patient group. MATERIALS AND METHODS: Of 1,847 patients who underwent EVAR at our institution between January 2006 and January 2017, a total of 9 patients were identified with imaging features of spondylodiscitis (0.5%). All cross-sectional studies before and after EVAR were assessed by a Consultant Musculoskeletal Radiologist and a Musculoskeletal Radiology Fellow to evaluate for features of spondylodiscitis. RESULTS: All 9 patients had single-level spondylodiscitis involving lumbosacral levels adjacent to the aortic/iliac stent graft. Eight out of nine patients had an extensive anterior paravertebral phlegmon/abscess that was contiguous with the infected stent graft and native aneurysm sac ± anterior vertebral body erosion. Epidural disease was present in only 3 out of 9 patients and was a minor feature. MRI was non-diagnostic in 3 out of 9 patients owing to susceptibility artefact. 18F-FDG PET/CT accurately depicted the spinal level involved and adjacent paravertebral disease in patients with non-diagnostic MRI and was adopted as the follow-up modality in 3 out of 5 surviving patients. CONCLUSION: Spondylodiscitis is a rare complication post-EVAR. Imaging features of disproportionate anterior paravertebral disease and anterior vertebral body bony involvement suggest direct spread of infection posteriorly to the adjacent vertebral column. Use of MRI versus 18F-FDG PET/CT as the optimal imaging modality should be directed by the type of stent graft deployed
Power electronics converters for an electric vehicle fast charging station with storage capability
Fast charging stations are a key element for the wide spreading of Electric Vehicles (EVs) by reducing the charging time to a range between 20 to 40 min. However, the integration of fast charging stations causes some adverse impacts on the Power Grid (PG), namely by the huge increase in the peak demand during short periods of time. This paper addresses the design of the power electronics converters for an EV DC fast charging station with local storage capability and easy interface of renewables. In the proposed topology, the energy storage capability is used to smooth the peak power demand, inherent to fast charging systems, and contributes to the stability of the PG. When integrated in a Smart Grid, the proposed topology may even return some of the stored energy back to the power grid, when necessary. The accomplishment of the aforementioned objectives requires a set of different power electronics converters that are described and discussed in this paper.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and by FCT within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – COMPETE 2020 Programme, and FCT within project SAICTPAC/0004/2015‐POCI‐01‐0145–FEDER‐016434 and FCT within project PTDC/EEI-EEE/28813/2017. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018 granted by the Portuguese FCT agency. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency
BioPARR:A software system for estimating the rupture potential index for abdominal aortic aneurysms
An abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the lower region of the aorta. It is a symptomless condition that, if left untreated, can expand until rupture. Despite ongoing efforts, an efficient tool for accurate estimation of AAA rupture risk is still not available. Furthermore, a lack of standardisation across current approaches and specific obstacles within computational workflows limit the translation of existing methods to the clinic. This paper presents BioPARR (Biomechanics based Prediction of Aneurysm Rupture Risk), a software system to facilitate the analysis of AAA using a finite element analysis based approach. Except semi-automatic segmentation of the AAA and intraluminal thrombus (ILT) from medical images, the entire analysis is performed automatically. The system is modular and easily expandable, allows the extraction of information from images of different modalities (e.g. CT and MRI) and the simulation of different modelling scenarios (e.g. with/without thrombus). The software uses contemporary methods that eliminate the need for patient-specific material properties, overcoming perhaps the key limitation to all previous patient-specific analysis methods. The software system is robust, free, and will allow researchers to perform comparative evaluation of AAA using a standardised approach. We report preliminary data from 48 cases
Genome Majority Vote Improves Gene Predictions
Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency of gene starts among orthologs. We used a set of validated Escherichia coli genes as a standard to quantify accuracy. Results showed that the GMV algorithm can correct hundreds of gene prediction errors in sets of five or ten genomes while introducing few errors. Using a conservative calculation, we project that GMV would resolve many inconsistencies and errors in publicly available microbial gene maps. Our simple and logical solution provides a notable advance toward accurate gene maps
Systematic Analysis of Cis-Elements in Unstable mRNAs Demonstrates that CUGBP1 Is a Key Regulator of mRNA Decay in Muscle Cells
BACKGROUND: Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS: We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS: Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development
Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009
In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from 10.69 billion in 2001, but increased thereafter, reaching 11.68 billion and 15.45 billion in 1996 to 5.39 billion and 4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination
- …
