36,377 research outputs found

    Coupled optical interface modes in a Fibonacci dielectric superlattice

    Get PDF
    The coupled optical interface modes in a Fibonacci dielectric superlattice are studied. In the dielectric continuum approximation, the dispersion relation is found to have two bands of dual triadic Cantor structures, each being nonuniform scaling. For most of the eigenfrequencies, the amplitude profiles of electrostatic potential in this quasiperiodic structure are critical. Moreover, an invariant is analytically derived and is used to describe the general features of the frequency spectra and potential profiles.published_or_final_versio

    Influence of ferromagnetic spin waves on persistent currents in one-dimensional mesoscopic rings

    Get PDF
    The influence of the electron-magnon and the electron-phonon interactions on the persistent current in a one-dimensional mesoscopic ring is studied. We show that, due to the electron-magnon interaction, the amplitude of the persistent current is exponentially reduced compared to the free case. Two features occur in the presence of an electron-phonon interaction. For the normal state of electrons, the persistent current is weakened by the Debye-Waller factor. Considering the so-called Peierls distortions, we show that the effect of the Peierls instability on the amplitude of the persistent current (i.e., the oscillation with respect to the flux) is suppressed significantly and the persistent current will be practically undetectable in the case of a wide-gap Peierls material. © 1996 The American Physical Society.published_or_final_versio

    Flat Dielectric Grating Reflectors with High Focusing Power

    Full text link
    Sub-wavelength dielectric gratings (SWG) have emerged recently as a promising alternative to distributed-Bragg-reflection (DBR) dielectric stacks for broadband, high-reflectivity filtering applications. A SWG structure composed of a single dielectric layer with the appropriate patterning can sometimes perform as well as thirty or forty dielectric DBR layers, while providing new functionalities such as polarization control and near-field amplification. In this paper, we introduce a remarkable property of grating mirrors that cannot be realized by their DBR counterpart: we show that a non-periodic patterning of the grating surface can give full control over the phase front of reflected light while maintaining a high reflectivity. This new feature of dielectric gratings could have a substantial impact on a number of applications that depend on low-cost, compact optical components, from laser cavities to CD/DVD read/write heads.Comment: submitted to Nature Photonic

    Sequences of dipole black rings and Kaluza-Klein bubbles

    Full text link
    We construct new exact solutions to 5D Einstein-Maxwell equations describing sequences of Kaluza-Klein bubbles and dipole black rings. The solutions are generated by 2-soliton transformations from vacuum black ring - bubble sequences. The properties of the solutions are investigated. We also derive the Smarr-like relations and the mass and tension first laws in the general case for such configurations of Kaluza-Klein bubbles and dipole black rings. The novel moment is the appearance of the magnetic flux in the Smarr-like relations and the first laws.Comment: 26 pages, 1 figur

    Quantum waveguide theory of serial stub structures

    Get PDF
    The electronic behaviors in quantum wires with serial stubs are studied. A general theory of quantum waveguide based on transfer matrix method is developed and is used to treat periodic stub structures, serial stub structures with a defect stub, and Fibonacci stub structures. A number of interesting physical properties in connection with electronic transmission, energy spectra, and charge density distributions in these structures, are found theoretically. In particular, we find that whether there are periodicity and symmetry in the transmission and energy spectra depends on the commensurability of the length parameters. If one length ratio is incommensurate, then the transmission and energy spectra do not exhibit periodicity and symmetry even for periodic stub structures. In particular, the quasiperiodic behaviors are shown in Fibonacci stub structures proposed by us whenever the length parameters are commensurate. The experimental relevance is also addressed briefly. © 1999 American Institute of Physics.published_or_final_versio

    Health literacy issues in the care of Chinese American immigrants with diabetes: a qualitative study

    Get PDF
    Objectives. To investigate why first-generation Chinese immigrants with diabetes have difficulty obtaining, processing and understanding diabetes related information despite the existence of translated materials and translators. Design This qualitative study employed purposive sampling. Six focus groups and two individual interviews were conducted. Each group discussion lasted approximately 90 min and was guided by semistructured and open-ended questions. Setting. Data were collected in two community health centres and one elderly retirement village in Los Angeles, California. Participants 29 Chinese immigrants aged ≥45 years and diagnosed with type 2 diabetes for at least 1 year. Results. Eight key themes were found to potentially affect Chinese immigrants' capacity to obtain, communicate, process and understand diabetes related health information and consequently alter their decision making in self-care. Among the themes, three major categories emerged: cultural factors, structural barriers, and personal barriers. Conclusions. Findings highlight the importance of cultural sensitivity when working with first-generation Chinese immigrants with diabetes. Implications for health professionals, local community centres and other potential service providers are discussed.published_or_final_versio

    Shock waves in strongly coupled plasmas

    Full text link
    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS5AdS_5 space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light v1v\to 1 the penetration depth \ell scales as (1v2)1/4\ell\sim (1-v^2)^{1/4}. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde

    Facile Synthesis of High Quality Graphene Nanoribbons

    Full text link
    Graphene nanoribbons have attracted attention for their novel electronic and spin transport properties1-6, and because nanoribbons less than 10 nm wide have a band gap that can be used to make field effect transistors. However, producing nanoribbons of very high quality, or in high volumes, remains a challenge. Here, we show that pristine few-layer nanoribbons can be produced by unzipping mildly gas-phase oxidized multiwalled carbon nanotube using mechanical sonication in an organic solvent. The nanoribbons exhibit very high quality, with smooth edges (as seen by high-resolution transmission electron microscopy), low ratios of disorder to graphitic Raman bands, and the highest electrical conductance and mobility reported to date (up to 5e2/h and 1500 cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the nanoribbons exhibit phase coherent transport and Fabry-Perot interference, suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2% of the starting raw nanotube soot material, which was significantly higher than previous methods capable of producing high quality narrow nanoribbons1. The relatively high yield synthesis of pristine graphene nanoribbons will make these materials easily accessible for a wide range of fundamental and practical applications.Comment: Nature Nanotechnology in pres
    corecore